Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):713–720. doi: 10.1042/BJ20030508

Co-incident signalling between mu-opioid and M3 muscarinic receptors at the level of Ca2+ release from intracellular stores: lack of evidence for Ins(1,4,5)P3 receptor sensitization.

Damien S K Samways 1, Wen-hong Li 1, Stuart J Conway 1, Andrew B Holmes 1, Martin D Bootman 1, Graeme Henderson 1
PMCID: PMC1223709  PMID: 12880387

Abstract

Activation of G(i)/G(o)-coupled opioid receptors increases [Ca2+]i (intracellular free-Ca2+ concentration), but only if there is concomitant G(q)-coupled receptor activation. This G(i)/G(o)-coupled receptor-mediated [Ca2+]i increase does not appear to result from further production of Ins P3 [Ins(1,4,5) P3] in SH-SY5Y cells. In the present study, fast-scanning confocal microscopy revealed that activation of mu-opioid receptors alone by 1 muM DAMGO ([L-Ala, NMe-Phe, Gly-ol]-enkephalin) did not stimulate the Ins P3-dependent elementary Ca2+-signalling events (Ca2+ puffs), whereas DAMGO did evoke Ca2+ puffs when applied during concomitant activation of M3 muscarinic receptors with 1 muM carbachol. We next determined whether mu-opioid receptor activation might increase [Ca2+]i by sensitizing the Ins P3 receptor to Ins P3. DAMGO did not potentiate the amplitude of the [Ca2+]i increase evoked by flash photolysis of the caged Ins P3 receptor agonist, caged 2,3-isopropylidene-Ins P3, whereas the Ins P3 receptor sensitizing agent, thimerosal (10 muM), did potentiate this response. DAMGO also did not prolong the rate of decay of the increase in [Ca2+]i evoked by flash photolysis of caged 2,3-isopropylidene-Ins P3. Furthermore, DAMGO did not increase [Ca2+]i in the presence of the cell-membrane-permeable Ins P3 receptor agonist, Ins P3 hexakis(butyryloxymethyl) ester. Therefore it appears that mu-opioid receptors do not increase [Ca2+]i through either Ins P3 receptor sensitization, enhancing the releasable pool of Ca2+ or inhibition of Ca2+ removal from the cytoplasm.

Full Text

The Full Text of this article is available as a PDF (169.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson J. J., Zable A. C., Favero T. G., Salama G. Thimerosal interacts with the Ca2+ release channel ryanodine receptor from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1995 Dec 15;270(50):29644–29647. doi: 10.1074/jbc.270.50.29644. [DOI] [PubMed] [Google Scholar]
  2. Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
  3. Bootman M. D., Berridge M. J. The elemental principles of calcium signaling. Cell. 1995 Dec 1;83(5):675–678. doi: 10.1016/0092-8674(95)90179-5. [DOI] [PubMed] [Google Scholar]
  4. Bootman M. D., Taylor C. W., Berridge M. J. The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1992 Dec 15;267(35):25113–25119. [PubMed] [Google Scholar]
  5. Bootman M., Niggli E., Berridge M., Lipp P. Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol. 1997 Mar 1;499(Pt 2):307–314. doi: 10.1113/jphysiol.1997.sp021928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyer J. L., Graber S. G., Waldo G. L., Harden T. K., Garrison J. C. Selective activation of phospholipase C by recombinant G-protein alpha- and beta gamma-subunits. J Biol Chem. 1994 Jan 28;269(4):2814–2819. [PubMed] [Google Scholar]
  7. Camps M., Carozzi A., Schnabel P., Scheer A., Parker P. J., Gierschik P. Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature. 1992 Dec 17;360(6405):684–686. doi: 10.1038/360684a0. [DOI] [PubMed] [Google Scholar]
  8. Cho K., Brown M. W., Bashir Z. I. Mechanisms and physiological role of enhancement of mGlu5 receptor function by group II mGlu receptor activation in rat perirhinal cortex. J Physiol. 2002 May 1;540(Pt 3):895–906. doi: 10.1113/jphysiol.2001.013920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Connor M., Henderson G. delta- and mu-opioid receptor mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells. Br J Pharmacol. 1996 Jan;117(2):333–340. doi: 10.1111/j.1476-5381.1996.tb15195.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Connor M., Yeo A., Henderson G. Neuropeptide Y Y2 receptor and somatostatin sst2 receptor coupling to mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells. Br J Pharmacol. 1997 Feb;120(3):455–463. doi: 10.1038/sj.bjp.0700920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Connor M., Yeo A., Henderson G. The effect of nociceptin on Ca2+ channel current and intracellular Ca2+ in the SH-SY5Y human neuroblastoma cell line. Br J Pharmacol. 1996 May;118(2):205–207. doi: 10.1111/j.1476-5381.1996.tb15387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ehrlich B. E., Kaftan E., Bezprozvannaya S., Bezprozvanny I. The pharmacology of intracellular Ca(2+)-release channels. Trends Pharmacol Sci. 1994 May;15(5):145–149. doi: 10.1016/0165-6147(94)90074-4. [DOI] [PubMed] [Google Scholar]
  13. Hirono M., Yoshioka T., Konishi S. GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci. 2001 Dec;4(12):1207–1216. doi: 10.1038/nn764. [DOI] [PubMed] [Google Scholar]
  14. Koizumi S., Bootman M. D., Bobanović L. K., Schell M. J., Berridge M. J., Lipp P. Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons. Neuron. 1999 Jan;22(1):125–137. doi: 10.1016/s0896-6273(00)80684-4. [DOI] [PubMed] [Google Scholar]
  15. Li W., Llopis J., Whitney M., Zlokarnik G., Tsien R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature. 1998 Apr 30;392(6679):936–941. doi: 10.1038/31965. [DOI] [PubMed] [Google Scholar]
  16. Mackrill J. J., Challiss R. A., O'connell D. A., Lai F. A., Nahorski S. R. Differential expression and regulation of ryanodine receptor and myo-inositol 1,4,5-trisphosphate receptor Ca2+ release channels in mammalian tissues and cell lines. Biochem J. 1997 Oct 1;327(Pt 1):251–258. doi: 10.1042/bj3270251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mezna M., Michelangeli F. Effects of thimerosal on the transient kinetics of inositol 1,4,5-trisphosphate-induced Ca2+ release from cerebellar microsomes. Biochem J. 1997 Jul 1;325(Pt 1):177–182. doi: 10.1042/bj3250177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Michel M. C., Feth F., Stieneker M., Rascher W. NPY and carbachol raise Ca2+ in SK-N-MC cells by three different mechanisms. Evidence for inositol phosphate-independent Ca2+ mobilization by NPY. Naunyn Schmiedebergs Arch Pharmacol. 1992 Apr;345(4):370–374. doi: 10.1007/BF00176612. [DOI] [PubMed] [Google Scholar]
  19. Montero M., Barrero M. J., Torrecilla F., Lobatón C. D., Moreno A., Alvarez J. Stimulation by thimerosal of histamine-induced Ca(2+) release in intact HeLa cells seen with aequorin targeted to the endoplasmic reticulum. Cell Calcium. 2001 Sep;30(3):181–190. doi: 10.1054/ceca.2001.0224. [DOI] [PubMed] [Google Scholar]
  20. Neylon C. B., Nickashin A., Tkachuk V. A., Bobik A. Heterotrimeric Gi protein is associated with the inositol 1,4,5-trisphosphate receptor complex and modulates calcium flux. Cell Calcium. 1998 May;23(5):281–289. doi: 10.1016/s0143-4160(98)90024-0. [DOI] [PubMed] [Google Scholar]
  21. Okajima F., Tomura H., Kondo Y. Enkephalin activates the phospholipase C/Ca2+ system through cross-talk between opioid receptors and P2-purinergic or bradykinin receptors in NG 108-15 cells. A permissive role for pertussis toxin-sensitive G-proteins. Biochem J. 1993 Feb 15;290(Pt 1):241–247. doi: 10.1042/bj2900241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sayers L. G., Brown G. R., Michell R. H., Michelangeli F. The effects of thimerosal on calcium uptake and inositol 1,4,5-trisphosphate-induced calcium release in cerebellar microsomes. Biochem J. 1993 Feb 1;289(Pt 3):883–887. doi: 10.1042/bj2890883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Selbie L. A., Hill S. J. G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways. Trends Pharmacol Sci. 1998 Mar;19(3):87–93. doi: 10.1016/s0165-6147(97)01166-8. [DOI] [PubMed] [Google Scholar]
  24. Short A. D., Taylor C. W. Parathyroid hormone controls the size of the intracellular Ca(2+) stores available to receptors linked to inositol trisphosphate formation. J Biol Chem. 2000 Jan 21;275(3):1807–1813. doi: 10.1074/jbc.275.3.1807. [DOI] [PubMed] [Google Scholar]
  25. Takeuchi H., Oike M., Paterson H. F., Allen V., Kanematsu T., Ito Y., Erneux C., Katan M., Hirata M. Inhibition of Ca(2+) signalling by p130, a phospholipase-C-related catalytically inactive protein: critical role of the p130 pleckstrin homology domain. Biochem J. 2000 Jul 1;349(Pt 1):357–368. doi: 10.1042/0264-6021:3490357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thomas D., Lipp P., Tovey S. C., Berridge M. J., Li W., Tsien R. Y., Bootman M. D. Microscopic properties of elementary Ca2+ release sites in non-excitable cells. Curr Biol. 2000 Jan 13;10(1):8–15. doi: 10.1016/s0960-9822(99)00258-4. [DOI] [PubMed] [Google Scholar]
  27. Thrower E. C., Duclohier H., Lea E. J., Molle G., Dawson A. P. The inositol 1,4,5-trisphosphate-gated Ca2+ channel: effect of the protein thiol reagent thimerosal on channel activity. Biochem J. 1996 Aug 15;318(Pt 1):61–66. doi: 10.1042/bj3180061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Toms N. J., Roberts P. J. Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology. 1999 Oct;38(10):1511–1517. doi: 10.1016/s0028-3908(99)00090-8. [DOI] [PubMed] [Google Scholar]
  29. Tomura H., Itoh H., Sho K., Sato K., Nagao M., Ui M., Kondo Y., Okajima F. Betagamma subunits of pertussis toxin-sensitive G proteins mediate A1 adenosine receptor agonist-induced activation of phospholipase C in collaboration with thyrotropin. A novel stimulatory mechanism through the cross-talk of two types of receptors. J Biol Chem. 1997 Sep 12;272(37):23130–23137. doi: 10.1074/jbc.272.37.23130. [DOI] [PubMed] [Google Scholar]
  30. Tomura H., Okajima F., Akbar M., Abdul Majid M., Sho K., Kondo Y. Transfected human somatostatin receptor type 2, SSTR2, not only inhibits adenylate cyclase but also stimulates phospholipase C and Ca2+ mobilization. Biochem Biophys Res Commun. 1994 Apr 29;200(2):986–992. doi: 10.1006/bbrc.1994.1547. [DOI] [PubMed] [Google Scholar]
  31. Tovey S. C., de Smet P., Lipp P., Thomas D., Young K. W., Missiaen L., De Smedt H., Parys J. B., Berridge M. J., Thuring J. Calcium puffs are generic InsP(3)-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci. 2001 Nov;114(Pt 22):3979–3989. doi: 10.1242/jcs.114.22.3979. [DOI] [PubMed] [Google Scholar]
  32. Tovey Stephen C., Goraya Tasmina A., Taylor Colin W. Parathyroid hormone increases the sensitivity of inositol trisphosphate receptors by a mechanism that is independent of cyclic AMP. Br J Pharmacol. 2003 Jan;138(1):81–90. doi: 10.1038/sj.bjp.0705011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vanlingen S., Sipma H., Missiaen L., De Smedt H., De Smet P., Casteels R., Parys J. B. Modulation of type 1, 2 and 3 inositol 1,4,5-trisphosphate receptors by cyclic ADP-ribose and thimerosal. Cell Calcium. 1999 Feb;25(2):107–114. doi: 10.1054/ceca.1998.0010. [DOI] [PubMed] [Google Scholar]
  34. Werry Tim D., Christie Mark I., Dainty Ian A., Wilkinson Graeme F., Willars Gary B. Ca(2+) signalling by recombinant human CXCR2 chemokine receptors is potentiated by P2Y nucleotide receptors in HEK cells. Br J Pharmacol. 2002 Mar;135(5):1199–1208. doi: 10.1038/sj.bjp.0704566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Werry Tim D., Wilkinson Graeme F., Willars Gary B. Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+. Biochem J. 2003 Sep 1;374(Pt 2):281–296. doi: 10.1042/BJ20030312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wojcikiewicz R. J., Furuichi T., Nakade S., Mikoshiba K., Nahorski S. R. Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J Biol Chem. 1994 Mar 18;269(11):7963–7969. [PubMed] [Google Scholar]
  37. Xu X., Zeng W., Muallem S. Regulation of the inositol 1,4,5-trisphosphate-activated Ca2+ channel by activation of G proteins. J Biol Chem. 1996 May 17;271(20):11737–11744. doi: 10.1074/jbc.271.20.11737. [DOI] [PubMed] [Google Scholar]
  38. Yeo A., Samways D. S., Fowler C. E., Gunn-Moore F., Henderson G. Coincident signalling between the Gi/Go-coupled delta-opioid receptor and the Gq-coupled m3 muscarinic receptor at the level of intracellular free calcium in SH-SY5Y cells. J Neurochem. 2001 Mar;76(6):1688–1700. doi: 10.1046/j.1471-4159.2001.00185.x. [DOI] [PubMed] [Google Scholar]
  39. Young K. W., Bootman M. D., Channing D. R., Lipp P., Maycox P. R., Meakin J., Challiss R. A., Nahorski S. R. Lysophosphatidic acid-induced Ca2+ mobilization requires intracellular sphingosine 1-phosphate production. Potential involvement of endogenous EDG-4 receptors. J Biol Chem. 2000 Dec 8;275(49):38532–38539. doi: 10.1074/jbc.M006631200. [DOI] [PubMed] [Google Scholar]
  40. Zeng W., Xu X., Muallem S. Gbetagamma transduces [Ca2+]i oscillations and Galphaq a sustained response during stimulation of pancreatic acinar cells with [Ca2+]i-mobilizing agonists. J Biol Chem. 1996 Aug 2;271(31):18520–18526. doi: 10.1074/jbc.271.31.18520. [DOI] [PubMed] [Google Scholar]
  41. van Acker K., Bautmans B., Bultynck G., Maes K., Weidema A. F., de Smet P., Parys J. B., de Smedt H., Missiaen L., Callewaert G. Mapping of IP(3)-mediated Ca(2+) signals in single human neuroblastoma SH-SY5Y cells: cell volume shaping the Ca(2+) signal. J Neurophysiol. 2000 Feb;83(2):1052–1057. doi: 10.1152/jn.2000.83.2.1052. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES