Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):581–592. doi: 10.1042/BJ20030763

Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry.

Paul J Thornalley 1, Sinan Battah 1, Naila Ahmed 1, Nikolaos Karachalias 1, Stamatina Agalou 1, Roya Babaei-Jadidi 1, Anne Dawnay 1
PMCID: PMC1223712  PMID: 12885296

Abstract

Glycation of proteins forms fructosamines and advanced glycation endproducts. Glycation adducts may be risk markers and risk factors of disease development. We measured the concentrations of the early glycation adduct fructosyl-lysine and 12 advanced glycation endproducts by liquid chromatography with tandem mass spectrometric detection. Underivatized analytes were detected free in physiological fluids and in enzymic hydrolysates of cellular and extracellular proteins. Hydroimidazolones were the most important glycation biomarkers quantitatively; monolysyl adducts (N(epsilon)-carboxymethyl-lysine and N(epsilon)-1-carboxyethyl-lysine) were found in moderate amounts, and bis(lysyl)imidazolium cross-links and pentosidine in lowest amounts. Quantitative screening showed high levels of advanced glycation endproducts in cellular protein and moderate levels in protein of blood plasma. Glycation adduct accumulation in tissues depended on the particular adduct and tissue type. Low levels of free advanced glycation endproducts were found in blood plasma and levels were 10-100-fold higher in urine. Advanced glycation endproduct residues were increased in blood plasma and at sites of vascular complications development in experimental diabetes; renal glomeruli, retina and peripheral nerve. In clinical uraemia, the concentrations of plasma protein advanced glycation endproduct residues increased 1-7-fold and free adduct concentrations increased up to 50-fold. Comprehensive screening of glycation adducts revealed the relative and quantitative importance of alpha-oxoaldehyde-derived advanced glycation endproducts in physiological modification of proteins-particularly hydroimidazolones, the efficient renal clearance of free adducts, and the marked increases of glycation adducts in diabetes and uraemia-particularly free advanced glycation endproducts in uraemia. Increased levels of these advanced glycation endproducts were associated with vascular complications in diabetes and uraemia.

Full Text

The Full Text of this article is available as a PDF (199.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed Naila, Argirov Ognian K., Minhas Harjit S., Cordeiro Carlos A. A., Thornalley Paul J. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nepsilon-carboxymethyl-lysine- and Nepsilon-(1-carboxyethyl)lysine-modified albumin. Biochem J. 2002 May 15;364(Pt 1):1–14. doi: 10.1042/bj3640001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmed Naila, Thornalley Paul J. Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and intrinsic fluorescence. Biochem J. 2002 May 15;364(Pt 1):15–24. doi: 10.1042/bj3640015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babaei-Jadidi Roya, Karachalias Nikolaos, Ahmed Naila, Battah Sinan, Thornalley Paul J. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes. 2003 Aug;52(8):2110–2120. doi: 10.2337/diabetes.52.8.2110. [DOI] [PubMed] [Google Scholar]
  4. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813–820. doi: 10.1038/414813a. [DOI] [PubMed] [Google Scholar]
  5. Faist V., Erbersdobler H. F. Metabolic transit and in vivo effects of melanoidins and precursor compounds deriving from the Maillard reaction. Ann Nutr Metab. 2001;45(1):1–12. doi: 10.1159/000046699. [DOI] [PubMed] [Google Scholar]
  6. Gaut Joseph P., Byun Jaeman, Tran Hung D., Heinecke Jay W. Artifact-free quantification of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma by electron capture-negative chemical ionization gas chromatography mass spectrometry and liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Biochem. 2002 Jan 15;300(2):252–259. doi: 10.1006/abio.2001.5469. [DOI] [PubMed] [Google Scholar]
  7. Gerner Christopher, Vejda Susanne, Gelbmann Dieter, Bayer Editha, Gotzmann Josef, Schulte-Hermann Rolf, Mikulits Wolfgang. Concomitant determination of absolute values of cellular protein amounts, synthesis rates, and turnover rates by quantitative proteome profiling. Mol Cell Proteomics. 2002 Jul;1(7):528–537. doi: 10.1074/mcp.m200026-mcp200. [DOI] [PubMed] [Google Scholar]
  8. Giulivi C., Davies K. J. Mechanism of the formation and proteolytic release of H2O2-induced dityrosine and tyrosine oxidation products in hemoglobin and red blood cells. J Biol Chem. 2001 Apr 9;276(26):24129–24136. doi: 10.1074/jbc.M010697200. [DOI] [PubMed] [Google Scholar]
  9. Glomb M. A., Lang G. Isolation and characterization of glyoxal-arginine modifications. J Agric Food Chem. 2001 Mar;49(3):1493–1501. doi: 10.1021/jf001082d. [DOI] [PubMed] [Google Scholar]
  10. Hammes H. P., Alt A., Niwa T., Clausen J. T., Bretzel R. G., Brownlee M., Schleicher E. D. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia. 1999 Jun;42(6):728–736. doi: 10.1007/s001250051221. [DOI] [PubMed] [Google Scholar]
  11. Hammes H. P., Brownlee M., Lin J., Schleicher E., Bretzel R. G. Diabetic retinopathy risk correlates with intracellular concentrations of the glycoxidation product Nepsilon-(carboxymethyl) lysine independently of glycohaemoglobin concentrations. Diabetologia. 1999 May;42(5):603–607. doi: 10.1007/s001250051201. [DOI] [PubMed] [Google Scholar]
  12. Hammes Hans-Peter, Du Xueliang, Edelstein Diane, Taguchi Tetsuya, Matsumura Takeshi, Ju Qida, Lin Jihong, Bierhaus Angelika, Nawroth Peter, Hannak Dieter. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 2003 Feb 18;9(3):294–299. doi: 10.1038/nm834. [DOI] [PubMed] [Google Scholar]
  13. Heidland A., Sebekova K., Schinzel R. Advanced glycation end products and the progressive course of renal disease. Am J Kidney Dis. 2001 Oct;38(4 Suppl 1):S100–S106. doi: 10.1053/ajkd.2001.27414. [DOI] [PubMed] [Google Scholar]
  14. Huggins T. G., Wells-Knecht M. C., Detorie N. A., Baynes J. W., Thorpe S. R. Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation. J Biol Chem. 1993 Jun 15;268(17):12341–12347. [PubMed] [Google Scholar]
  15. Lal S., Kappler F., Walker M., Orchard T. J., Beisswenger P. J., Szwergold B. S., Brown T. R. Quantitation of 3-deoxyglucosone levels in human plasma. Arch Biochem Biophys. 1997 Jun 15;342(2):254–260. doi: 10.1006/abbi.1997.0117. [DOI] [PubMed] [Google Scholar]
  16. Leoncini G., Maresca M., Bonsignore A. The effect of methylglyoxal on the glycolytic enzymes. FEBS Lett. 1980 Aug 11;117(1):17–18. doi: 10.1016/0014-5793(80)80903-3. [DOI] [PubMed] [Google Scholar]
  17. Lim Paik-Seong, Chang Yei-Mei, Thien Lee-Moi, Wang Nai-Phong, Yang Chiu-Ching, Chen Tsen-Tsai, Hsu Wei-Min. 8-iso-prostaglandin F2alpha as a useful clinical biomarker of oxidative stress in ESRD patients. Blood Purif. 2002;20(6):537–542. doi: 10.1159/000066962. [DOI] [PubMed] [Google Scholar]
  18. Makita Z., Bucala R., Rayfield E. J., Friedman E. A., Kaufman A. M., Korbet S. M., Barth R. H., Winston J. A., Fuh H., Manogue K. R. Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. Lancet. 1994 Jun 18;343(8912):1519–1522. doi: 10.1016/s0140-6736(94)92935-1. [DOI] [PubMed] [Google Scholar]
  19. McLellan A. C., Thornalley P. J., Benn J., Sonksen P. H. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (Lond) 1994 Jul;87(1):21–29. doi: 10.1042/cs0870021. [DOI] [PubMed] [Google Scholar]
  20. Meldal M., Kindtler J. W. Synthesis of a proposed antigenic hexapeptide from Escherichia coli K88 protein fimbriae. Acta Chem Scand B. 1986 Apr;40(4):235–241. doi: 10.3891/acta.chem.scand.40b-0235. [DOI] [PubMed] [Google Scholar]
  21. Miyata T., van Ypersele de Strihou C., Imasawa T., Yoshino A., Ueda Y., Ogura H., Kominami K., Onogi H., Inagi R., Nangaku M. Glyoxalase I deficiency is associated with an unusual level of advanced glycation end products in a hemodialysis patient. Kidney Int. 2001 Dec;60(6):2351–2359. doi: 10.1046/j.1523-1755.2001.00051.x. [DOI] [PubMed] [Google Scholar]
  22. Myint T., Hoshi S., Ookawara T., Miyazawa N., Suzuki K., Taniguchi N. Immunological detection of glycated proteins in normal and streptozotocin-induced diabetic rats using anti hexitol-lysine IgG. Biochim Biophys Acta. 1995 Oct 17;1272(2):73–79. doi: 10.1016/0925-4439(95)00067-e. [DOI] [PubMed] [Google Scholar]
  23. Odani H., Shinzato T., Matsumoto Y., Usami J., Maeda K. Increase in three alpha,beta-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochem Biophys Res Commun. 1999 Mar 5;256(1):89–93. doi: 10.1006/bbrc.1999.0221. [DOI] [PubMed] [Google Scholar]
  24. Ohshima H., Friesen M., Brouet I., Bartsch H. Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins. Food Chem Toxicol. 1990 Sep;28(9):647–652. doi: 10.1016/0278-6915(90)90173-k. [DOI] [PubMed] [Google Scholar]
  25. Poggioli Sylvie, Bakala Hilaire, Friguet Bertrand. Age-related increase of protein glycation in peripheral blood lymphocytes is restricted to preferential target proteins. Exp Gerontol. 2002 Oct-Nov;37(10-11):1207–1215. doi: 10.1016/s0531-5565(02)00145-6. [DOI] [PubMed] [Google Scholar]
  26. Pruess Manuela, Fleischmann Wolfgang, Kanapin Alexander, Karavidopoulou Youla, Kersey Paul, Kriventseva Evgenia, Mittard Virginie, Mulder Nicola, Phan Isabelle, Servant Florence. The Proteome Analysis database: a tool for the in silico analysis of whole proteomes. Nucleic Acids Res. 2003 Jan 1;31(1):414–417. doi: 10.1093/nar/gkg105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sakamoto Hiroshi, Mashima Tetsuo, Yamamoto Kazuo, Tsuruo Takashi. Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification. J Biol Chem. 2002 Sep 10;277(48):45770–45775. doi: 10.1074/jbc.M207485200. [DOI] [PubMed] [Google Scholar]
  28. Schmidt A. M., Yan S. D., Yan S. F., Stern D. M. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001 Oct;108(7):949–955. doi: 10.1172/JCI14002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shinohara M., Thornalley P. J., Giardino I., Beisswenger P., Thorpe S. R., Onorato J., Brownlee M. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest. 1998 Mar 1;101(5):1142–1147. doi: 10.1172/JCI119885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sokolovsky M., Riordan J. F., Vallee B. L. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry. 1966 Nov;5(11):3582–3589. doi: 10.1021/bi00875a029. [DOI] [PubMed] [Google Scholar]
  31. Szwergold B. S., Howell S., Beisswenger P. J. Human fructosamine-3-kinase: purification, sequencing, substrate specificity, and evidence of activity in vivo. Diabetes. 2001 Sep;50(9):2139–2147. doi: 10.2337/diabetes.50.9.2139. [DOI] [PubMed] [Google Scholar]
  32. Thornalley P. J. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy-le-grand) 1998 Nov;44(7):1013–1023. [PubMed] [Google Scholar]
  33. Thornalley P. J., McLellan A. C., Lo T. W., Benn J., Sönksen P. H. Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci (Lond) 1996 Nov;91(5):575–582. doi: 10.1042/cs0910575. [DOI] [PubMed] [Google Scholar]
  34. Verzijl N., DeGroot J., Thorpe S. R., Bank R. A., Shaw J. N., Lyons T. J., Bijlsma J. W., Lafeber F. P., Baynes J. W., TeKoppele J. M. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000 Dec 15;275(50):39027–39031. doi: 10.1074/jbc.M006700200. [DOI] [PubMed] [Google Scholar]
  35. Weissbach Herbert, Etienne Frantzy, Hoshi Toshinori, Heinemann Stefan H., Lowther W. Todd, Matthews Brian, St John Gregory, Nathan Carl, Brot Nathan. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys. 2002 Jan 15;397(2):172–178. doi: 10.1006/abbi.2001.2664. [DOI] [PubMed] [Google Scholar]
  36. Zhang X., Medzihradszky K. F., Cunningham J., Lee P. D., Rognerud C. L., Ou C. N., Harmatz P., Witkowska H. E. Characterization of glycated hemoglobin in diabetic patients: usefulness of electrospray mass spectrometry in monitoring the extent and distribution of glycation. J Chromatogr B Biomed Sci Appl. 2001 Aug 5;759(1):1–15. doi: 10.1016/s0378-4347(01)00196-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES