Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):681–688. doi: 10.1042/BJ20030726

Isolation and characterization of haemoporin, an abundant haemolymph protein from Aplysia californica.

Elmar Jaenicke 1, Patrick J Walsh 1, Heinz Decker 1
PMCID: PMC1223716  PMID: 12889987

Abstract

In the present study, we show the isolation and characterization of the protein haemoporin, which constitutes the second most abundant protein fraction in the haemolymph of the marine gastropod Aplysia californica. Although Aplysia is commonly used to investigate the molecular basis of learning, not much is known about the proteins in its haemolymph, which is in contact with the neurons owing to the open circulatory system of molluscs. In the native state, haemoporin is a macromolecular complex forming a cylinder with a central solvent-filled pore. The native complex most probably is a homopentamer made up from 70 kDa subunits with a molecular mass of 360 kDa and a sedimentation coefficient of 11.7 S. Prediction of the secondary structure by CD spectroscopy revealed that haemoporin contains 36% alpha-helices and 19% beta-strands. An absorption band in the 300-400 nm region indicates that haemoporin probably contains a bound substance. Haemoporin also contains a below average amount of tryptophan as evident from absorption and fluorescence spectra. The specific absorption coefficient at 280 nm (a (280 nm, 1 mg/ml)) varies between 0.42 and 0.59 l x g(-1) x cm(-1) depending on the method. The function of the protein is not yet known, but there are structural parallels between haemoporin and a pore protein reported previously in the haemolymph of another marine gastropod Megathura crenulata. The alanine-rich N-terminal sequence (AAVPEAAAEATAEAAPVSEF) is unique among protein sequences and indicates an alpha-helical structure. Whereas one side of the helix is hydrophobic and faces the interior of the protein, the other side contains a glutamic cluster, which may form the channel of the pore in the quaternary structure. Thus both proteins might belong to a new class of haemolymph proteins present in the haemolymph of marine gastropods.

Full Text

The Full Text of this article is available as a PDF (231.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O., Diaz E., Latorre R. Voltage-dependent conductance induced by hemocyanin in black lipid films. Biochim Biophys Acta. 1975 May 21;389(3):444–448. doi: 10.1016/0005-2736(75)90155-8. [DOI] [PubMed] [Google Scholar]
  2. Bevelaqua F. A., Kim K. S., Kumarasiri M. H., Schwartz J. H. Isolation and characterization of acetylcholinesterase and other particulate proteins in the hemolymph of Aplysia californica. J Biol Chem. 1975 Jan 25;250(2):731–738. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cawthorpe D., Higgins A., Lukowiak K. FMRFamide prevents habituation and potentiates the gill withdrawal reflex in the isolated gill preparation of Aplysia. Regul Pept. 1988 Aug;22(3):227–236. doi: 10.1016/0167-0115(88)90035-3. [DOI] [PubMed] [Google Scholar]
  5. Chakrabartty A., Kortemme T., Baldwin R. L. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 1994 May;3(5):843–852. doi: 10.1002/pro.5560030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuff M. E., Miller K. I., van Holde K. E., Hendrickson W. A. Crystal structure of a functional unit from Octopus hemocyanin. J Mol Biol. 1998 May 15;278(4):855–870. doi: 10.1006/jmbi.1998.1647. [DOI] [PubMed] [Google Scholar]
  7. Demeler B., Saber H. Determination of molecular parameters by fitting sedimentation data to finite-element solutions of the Lamm equation. Biophys J. 1998 Jan;74(1):444–454. doi: 10.1016/S0006-3495(98)77802-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Demeler B., Saber H., Hansen J. C. Identification and interpretation of complexity in sedimentation velocity boundaries. Biophys J. 1997 Jan;72(1):397–407. doi: 10.1016/S0006-3495(97)78680-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  10. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  11. Harpaz Y., Gerstein M., Chothia C. Volume changes on protein folding. Structure. 1994 Jul 15;2(7):641–649. doi: 10.1016/s0969-2126(00)00065-4. [DOI] [PubMed] [Google Scholar]
  12. Harris J. R., Markl J. Electron microscopy and biochemical characterization of a 350-kDa annular hemolymph protein from the keyhole limpet Megathura crenulata. Eur J Biochem. 1994 Oct 15;225(2):521–528. doi: 10.1111/j.1432-1033.1994.00521.x. [DOI] [PubMed] [Google Scholar]
  13. Heras H., Pollero R. J. Lipoproteins from plasma and perivelline fluid of the apple snail Pomacea canaliculata. Biocell. 2002 Apr;26(1):111–118. [PubMed] [Google Scholar]
  14. Herskovits T. T., Edwards M. D., Hamilton M. G. The hemocyanin of the Californian black sea hare, Aplysia vaccaria Winkler. Comp Biochem Physiol B Biochem Mol Biol. 1995 Mar;110(3):515–521. doi: 10.1016/0305-0491(94)00199-5. [DOI] [PubMed] [Google Scholar]
  15. Johnson M. L., Correia J. J., Yphantis D. A., Halvorson H. R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys J. 1981 Dec;36(3):575–588. doi: 10.1016/S0006-3495(81)84753-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Luque I., Mayorga O. L., Freire E. Structure-based thermodynamic scale of alpha-helix propensities in amino acids. Biochemistry. 1996 Oct 22;35(42):13681–13688. doi: 10.1021/bi961319s. [DOI] [PubMed] [Google Scholar]
  18. McIntosh T. J., Robertson J. D., Ting-Beall H. P., Walter A., Zampighi G. On the structure of the hemocyanin channel in lipid bilayers. Biochim Biophys Acta. 1980 Sep 18;601(2):289–301. doi: 10.1016/0005-2736(80)90534-9. [DOI] [PubMed] [Google Scholar]
  19. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  20. Padmanabhan S., Baldwin R. L. Straight-chain non-polar amino acids are good helix-formers in water. J Mol Biol. 1991 May 20;219(2):135–137. doi: 10.1016/0022-2836(91)90553-i. [DOI] [PubMed] [Google Scholar]
  21. Prince J., Nolen T. G., Coelho L. Defensive ink pigment processing and secretion in Aplysia californica: concentration and storage of phycoerythrobilin in the ink gland. J Exp Biol. 1998 May;201(Pt 10):1595–1613. doi: 10.1242/jeb.201.10.1595. [DOI] [PubMed] [Google Scholar]
  22. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  23. Schacher S., Proshansky E. Neurite regeneration by Aplysia neurons in dissociated cell culture: modulation by Aplysia hemolymph and the presence of the initial axonal segment. J Neurosci. 1983 Dec;3(12):2403–2413. doi: 10.1523/JNEUROSCI.03-12-02403.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scopes R. K. Measurement of protein by spectrophotometry at 205 nm. Anal Biochem. 1974 May;59(1):277–282. doi: 10.1016/0003-2697(74)90034-7. [DOI] [PubMed] [Google Scholar]
  25. Sreerama N., Woody R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000 Dec 15;287(2):252–260. doi: 10.1006/abio.2000.4880. [DOI] [PubMed] [Google Scholar]
  26. Srivatsan M., Peretz B. Acetylcholinesterase promotes regeneration of neurites in cultured adult neurons of Aplysia. Neuroscience. 1997 Apr;77(3):921–931. doi: 10.1016/s0306-4522(96)00458-7. [DOI] [PubMed] [Google Scholar]
  27. Srivatsan M., Peretz B., Hallahan B., Talwalker R. Effect of age on acetylcholinesterase and other hemolymph proteins in Aplysia. J Comp Physiol B. 1992;162(1):29–37. doi: 10.1007/BF00257933. [DOI] [PubMed] [Google Scholar]
  28. Stuart D. K., Strumwasser F. Neuronal sites of action of a neurosecretory peptide, egg-laying hormone, in Aplysia californica. J Neurophysiol. 1980 Feb;43(2):499–519. doi: 10.1152/jn.1980.43.2.499. [DOI] [PubMed] [Google Scholar]
  29. Telfer W. H., Kunkel J. G. The function and evolution of insect storage hexamers. Annu Rev Entomol. 1991;36:205–228. doi: 10.1146/annurev.en.36.010191.001225. [DOI] [PubMed] [Google Scholar]
  30. van Holde K. E., Miller K. I. Hemocyanins. Adv Protein Chem. 1995;47:1–81. doi: 10.1016/s0065-3233(08)60545-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES