Abstract
Phospholipid biosynthesis plays a key role in malarial infection and is regulated by CCT (CTP:phosphocholine cytidylyltransferase). This enzyme belongs to the group of amphitropic proteins which are regulated by reversible membrane interaction. To assess the role of the putative membrane-binding domain of Plasmodium falciparum CCT (PfCCT), we synthesized three peptides, K21, V20 and K54 corresponding to residues 274-294, 308-327 and 274-327 of PfCCT respectively. Conformational behaviour of the peptides, their ability to bind to liposomes and to destabilize lipid bilayers, and their insertion properties were investigated by different biophysical techniques. The intercalation mechanisms of the peptides were refined further by using surface-pressure measurements on various monolayers at the air/water interface. In the present study, we show that the three studied peptides are able to bind to anionic and neutral phospholipids, and that they present an alpha-helical conformation upon lipid binding. Peptides V20 and the full-length K54 intercalate their hydrophobic parts into an anionic bilayer and, to a lesser extent, a neutral one for V20. Peptide K21 interacts only superficially with both types of phospholipid vesicles. Adsorption experiments performed at the air/water interface revealed that peptide K54 is strongly surface-active in the absence of lipid. Peptide V20 presents an atypical behaviour in the presence of phosphatidylserine. Whatever the initial surface pressure of a phosphatidylserine film, peptide V20 and phosphatidylserine entities seem linked together in a special organization involving electrostatic and hydrophobic interactions. We showed that PfCCT presents different lipid-dependence properties from other studied CCTs. Although the lipid-binding domain seems to be located in the C-terminal region of the enzyme, as with the mammalian counterpart, the membrane anchorage, which plays a key role in the enzyme regulation, is driven by two alpha-helices, which behave differently from one another.
Full Text
The Full Text of this article is available as a PDF (163.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ancelin M. L., Vial H. J. Regulation of phosphatidylcholine biosynthesis in Plasmodium-infected erythrocytes. Biochim Biophys Acta. 1989 Jan 23;1001(1):82–89. doi: 10.1016/0005-2760(89)90310-x. [DOI] [PubMed] [Google Scholar]
- Ancelin Marie L., Calas Michèle, Bonhoure Anne, Herbute Serge, Vial Henri J. In vivo antimalarial activities of mono- and bis quaternary ammonium salts interfering with Plasmodium phospholipid metabolism. Antimicrob Agents Chemother. 2003 Aug;47(8):2598–2605. doi: 10.1128/AAC.47.8.2598-2605.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ancelin Marie L., Calas Michèle, Vidal-Sailhan Valérie, Herbuté Serge, Ringwald Pascal, Vial Henri J. Potent inhibitors of Plasmodium phospholipid metabolism with a broad spectrum of in vitro antimalarial activities. Antimicrob Agents Chemother. 2003 Aug;47(8):2590–2597. doi: 10.1128/AAC.47.8.2590-2597.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnold R. S., Cornell R. B. Lipid regulation of CTP: phosphocholine cytidylyltransferase: electrostatic, hydrophobic, and synergistic interactions of anionic phospholipids and diacylglycerol. Biochemistry. 1996 Jul 30;35(30):9917–9924. doi: 10.1021/bi960397c. [DOI] [PubMed] [Google Scholar]
- Arnold R. S., DePaoli-Roach A. A., Cornell R. B. Binding of CTP:phosphocholine cytidylyltransferase to lipid vesicles: diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes. Biochemistry. 1997 May 20;36(20):6149–6156. doi: 10.1021/bi970023z. [DOI] [PubMed] [Google Scholar]
- Attard G. S., Templer R. H., Smith W. S., Hunt A. N., Jackowski S. Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9032–9036. doi: 10.1073/pnas.160260697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carman G. M., Henry S. A. Phospholipid biosynthesis in yeast. Annu Rev Biochem. 1989;58:635–669. doi: 10.1146/annurev.bi.58.070189.003223. [DOI] [PubMed] [Google Scholar]
- Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
- Cornell R. B., Kalmar G. B., Kay R. J., Johnson M. A., Sanghera J. S., Pelech S. L. Functions of the C-terminal domain of CTP: phosphocholine cytidylyltransferase. Effects of C-terminal deletions on enzyme activity, intracellular localization and phosphorylation potential. Biochem J. 1995 Sep 1;310(Pt 2):699–708. doi: 10.1042/bj3100699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornell R. B., Northwood I. C. Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem Sci. 2000 Sep;25(9):441–447. doi: 10.1016/s0968-0004(00)01625-x. [DOI] [PubMed] [Google Scholar]
- Craig L., Johnson J. E., Cornell R. B. Identification of the membrane-binding domain of rat liver CTP:phosphocholine cytidylyltransferase using chymotrypsin proteolysis. J Biol Chem. 1994 Feb 4;269(5):3311–3317. [PubMed] [Google Scholar]
- Davies S. M., Epand R. M., Kraayenhof R., Cornell R. B. Regulation of CTP: phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: an important role for stored curvature strain energy. Biochemistry. 2001 Sep 4;40(35):10522–10531. doi: 10.1021/bi010904c. [DOI] [PubMed] [Google Scholar]
- Drobnies Adrienne E., Davies Sarah M. A., Kraayenhof Ruud, Epand Raquel F., Epand Richard M., Cornell Rosemary B. CTP:phosphocholine cytidylyltransferase and protein kinase C recognize different physical features of membranes: differential responses to an oxidized phosphatidylcholine. Biochim Biophys Acta. 2002 Aug 19;1564(1):82–90. doi: 10.1016/s0005-2736(02)00404-2. [DOI] [PubMed] [Google Scholar]
- Dunne S. J., Cornell R. B., Johnson J. E., Glover N. R., Tracey A. S. Structure of the membrane binding domain of CTP:phosphocholine cytidylyltransferase. Biochemistry. 1996 Sep 17;35(37):11975–11984. doi: 10.1021/bi960821+. [DOI] [PubMed] [Google Scholar]
- Eisenberg D., Weiss R. M., Terwilliger T. C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A. 1984 Jan;81(1):140–144. doi: 10.1073/pnas.81.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friesen J. A., Campbell H. A., Kent C. Enzymatic and cellular characterization of a catalytic fragment of CTP:phosphocholine cytidylyltransferase alpha. J Biol Chem. 1999 May 7;274(19):13384–13389. doi: 10.1074/jbc.274.19.13384. [DOI] [PubMed] [Google Scholar]
- Friesen J. A., Liu M. F., Kent C. Cloning and characterization of a lipid-activated CTP:phosphocholine cytidylyltransferase from Caenorhabditis elegans: identification of a 21-residue segment critical for lipid activation. Biochim Biophys Acta. 2001 Sep 28;1533(2):86–98. doi: 10.1016/s1388-1981(01)00145-7. [DOI] [PubMed] [Google Scholar]
- Garner J., Crooke E. Membrane regulation of the chromosomal replication activity of E. coli DnaA requires a discrete site on the protein. EMBO J. 1996 Jul 1;15(13):3477–3485. [PMC free article] [PubMed] [Google Scholar]
- Garner J., Durrer P., Kitchen J., Brunner J., Crooke E. Membrane-mediated release of nucleotide from an initiator of chromosomal replication, Escherichia coli DnaA, occurs with insertion of a distinct region of the protein into the lipid bilayer. J Biol Chem. 1998 Feb 27;273(9):5167–5173. doi: 10.1074/jbc.273.9.5167. [DOI] [PubMed] [Google Scholar]
- Gilbert G. E., Baleja J. D. Membrane-binding peptide from the C2 domain of factor VIII forms an amphipathic structure as determined by NMR spectroscopy. Biochemistry. 1995 Mar 7;34(9):3022–3031. doi: 10.1021/bi00009a033. [DOI] [PubMed] [Google Scholar]
- Houweling M., Jamil H., Hatch G. M., Vance D. E. Dephosphorylation of CTP-phosphocholine cytidylyltransferase is not required for binding to membranes. J Biol Chem. 1994 Mar 11;269(10):7544–7551. [PubMed] [Google Scholar]
- Johnson J. E., Aebersold R., Cornell R. B. An amphipathic alpha-helix is the principle membrane-embedded region of CTP:phosphocholine cytidylyltransferase. Identification of the 3-(trifluoromethyl)-3-(m-[125I]iodophenyl) diazirine photolabeled domain. Biochim Biophys Acta. 1997 Mar 13;1324(2):273–284. doi: 10.1016/s0005-2736(96)00233-7. [DOI] [PubMed] [Google Scholar]
- Johnson J. E., Cornell R. B. Amphitropic proteins: regulation by reversible membrane interactions (review). Mol Membr Biol. 1999 Jul-Sep;16(3):217–235. doi: 10.1080/096876899294544. [DOI] [PubMed] [Google Scholar]
- Johnson J. E., Cornell R. B. Membrane-binding amphipathic alpha-helical peptide derived from CTP:phosphocholine cytidylyltransferase. Biochemistry. 1994 Apr 12;33(14):4327–4335. doi: 10.1021/bi00180a029. [DOI] [PubMed] [Google Scholar]
- Johnson J. E., Kalmar G. B., Sohal P. S., Walkey C. J., Yamashita S., Cornell R. B. Comparison of the lipid regulation of yeast and rat CTP: phosphocholine cytidylyltransferase expressed in COS cells. Biochem J. 1992 Aug 1;285(Pt 3):815–820. doi: 10.1042/bj2850815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson J. E., Rao N. M., Hui S. W., Cornell R. B. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase. Biochemistry. 1998 Jun 30;37(26):9509–9519. doi: 10.1021/bi980340l. [DOI] [PubMed] [Google Scholar]
- Johnson Joanne E., Xie Mingtang, Singh Laila M. R., Edge Robert, Cornell Rosemary B. Both acidic and basic amino acids in an amphitropic enzyme, CTP:phosphocholine cytidylyltransferase, dictate its selectivity for anionic membranes. J Biol Chem. 2002 Oct 24;278(1):514–522. doi: 10.1074/jbc.M206072200. [DOI] [PubMed] [Google Scholar]
- Johnson R. P., Niggli V., Durrer P., Craig S. W. A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers. Biochemistry. 1998 Jul 14;37(28):10211–10222. doi: 10.1021/bi9727242. [DOI] [PubMed] [Google Scholar]
- Lykidis A., Baburina I., Jackowski S. Distribution of CTP:phosphocholine cytidylyltransferase (CCT) isoforms. Identification of a new CCTbeta splice variant. J Biol Chem. 1999 Sep 17;274(38):26992–27001. doi: 10.1074/jbc.274.38.26992. [DOI] [PubMed] [Google Scholar]
- Lykidis A., Jackson P., Jackowski S. Lipid activation of CTP: phosphocholine cytidylyltransferase alpha: characterization and identification of a second activation domain. Biochemistry. 2001 Jan 16;40(2):494–503. doi: 10.1021/bi002140r. [DOI] [PubMed] [Google Scholar]
- Lykidis A., Murti K. G., Jackowski S. Cloning and characterization of a second human CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1998 May 29;273(22):14022–14029. doi: 10.1074/jbc.273.22.14022. [DOI] [PubMed] [Google Scholar]
- MacDonald J. I., Kent C. Identification of phosphorylation sites in rat liver CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1994 Apr 8;269(14):10529–10537. [PubMed] [Google Scholar]
- Mauël C., Young M., Karamata D. Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J Gen Microbiol. 1991 Apr;137(4):929–941. doi: 10.1099/00221287-137-4-929. [DOI] [PubMed] [Google Scholar]
- Pooley H. M., Abellan F. X., Karamata D. A conditional-lethal mutant of bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. J Gen Microbiol. 1991 Apr;137(4):921–928. doi: 10.1099/00221287-137-4-921. [DOI] [PubMed] [Google Scholar]
- Ramos Belén, El Mouedden Mohammed, Claro Enrique, Jackowski Suzanne. Inhibition of CTP:phosphocholine cytidylyltransferase by C(2)-ceramide and its relationship to apoptosis. Mol Pharmacol. 2002 Nov;62(5):1068–1075. doi: 10.1124/mol.62.5.1068. [DOI] [PubMed] [Google Scholar]
- Sohal P. S., Cornell R. B. Sphingosine inhibits the activity of rat liver CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1990 Jul 15;265(20):11746–11750. [PubMed] [Google Scholar]
- Sönnichsen F. D., Van Eyk J. E., Hodges R. S., Sykes B. D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry. 1992 Sep 22;31(37):8790–8798. doi: 10.1021/bi00152a015. [DOI] [PubMed] [Google Scholar]
- Wang Y., Kent C. Effects of altered phosphorylation sites on the properties of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1995 Jul 28;270(30):17843–17849. doi: 10.1074/jbc.270.30.17843. [DOI] [PubMed] [Google Scholar]
- Wang Y., Kent C. Identification of an inhibitory domain of CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1995 Aug 11;270(32):18948–18952. doi: 10.1074/jbc.270.32.18948. [DOI] [PubMed] [Google Scholar]
- Weber C. H., Park Y. S., Sanker S., Kent C., Ludwig M. L. A prototypical cytidylyltransferase: CTP:glycerol-3-phosphate cytidylyltransferase from bacillus subtilis. Structure. 1999 Sep 15;7(9):1113–1124. doi: 10.1016/s0969-2126(99)80178-6. [DOI] [PubMed] [Google Scholar]
- Weinhold P. A., Barrett D. Studies on the regulation of CTP:phosphocholine cytidylyltransferase using permeabilized HEP G2 cells: evidence that both active and inactive enzyme are membrane-bound. Biochim Biophys Acta. 1998 Apr 22;1391(3):307–319. doi: 10.1016/s0005-2760(97)00206-3. [DOI] [PubMed] [Google Scholar]
- Wengelnik Kai, Vidal Valerie, Ancelin Marie L., Cathiard Anne-Marie, Morgat Jean Louis, Kocken Clemens H., Calas Michèle, Herrera Socrates, Thomas Alan W., Vial Henri J. A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science. 2002 Feb 15;295(5558):1311–1314. doi: 10.1126/science.1067236. [DOI] [PubMed] [Google Scholar]
- Wieder T., Geilen C. C., Wieprecht M., Becker A., Orfanos C. E. Identification of a putative membrane-interacting domain of CTP:phosphocholine cytidylyltransferase from rat liver. FEBS Lett. 1994 May 30;345(2-3):207–210. doi: 10.1016/0014-5793(94)00433-1. [DOI] [PubMed] [Google Scholar]
- Yang W., Jackowski S. Lipid activation of CTP:phosphocholine cytidylyltransferase is regulated by the phosphorylated carboxyl-terminal domain. J Biol Chem. 1995 Jul 14;270(28):16503–16506. doi: 10.1074/jbc.270.28.16503. [DOI] [PubMed] [Google Scholar]
- Yeo H. J., Larvor M. P., Ancelin M. L., Vial H. J. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase expressed in Escherichia coli: purification, characterization and lipid regulation. Biochem J. 1997 Jun 15;324(Pt 3):903–910. doi: 10.1042/bj3240903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeo H. J., Sri Widada J., Mercereau-Puijalon O., Vial H. J. Molecular cloning of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum. Eur J Biochem. 1995 Oct 1;233(1):62–72. doi: 10.1111/j.1432-1033.1995.062_1.x. [DOI] [PubMed] [Google Scholar]
