Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):623–631. doi: 10.1042/BJ20030915

Eukaryotic translation-initiation factor eIF2beta binds to protein kinase CK2: effects on CK2alpha activity.

Franc Llorens 1, Nerea Roher 1, Francesc A Miró 1, Stefania Sarno 1, F Xavier Ruiz 1, Flavio Meggio 1, Maria Plana 1, Lorenzo A Pinna 1, Emilio Itarte 1
PMCID: PMC1223719  PMID: 12901717

Abstract

eIF2 (eukaryotic translation-initiation factor 2) is a substrate and an interacting partner for CK2 (protein kinase CK2). Co-immuno-precipitation of CK2 with eIF2beta has now been observed in HeLa cells, overexpressing haemagglutinin-tagged human recombinant eIF2beta. A direct association between His6-tagged human recombinant forms of eIF2beta subunit and both the catalytic (CK2alpha) and the regulatory (CK2beta) subunits of CK2 has also been shown by using different techniques. Surface plasmon resonance analysis indicated a high affinity in the interaction between eIF2beta and CK2alpha, whereas the affinity for the association with CK2beta is much lower. Free CK2alpha is unable to phosphorylate eIF2beta, whereas up to 1.2 mol of phosphate/mol of eIF2beta was incorporated by the reconstituted CK2 holoenzyme. The N-terminal third part of eIF2beta is dispensable for binding to either CK2alpha or CK2beta, although it contains the phosphorylation sites for CK2. The remaining central/C-terminal part of eIF2beta is not phosphorylated by CK2, but is sufficient for binding to both CK2 subunits. The presence of eIF2beta inhibited CK2alpha activity on calmodulin and beta-casein, but it had a minor effect on that of the reconstituted CK2 holoenzyme. The truncated forms corresponding to the N-terminal or central/C-terminal regions of eIF2beta were much less inhibitory than the intact subunit. The results demonstrate that the ability to associate with CK2 subunits and to serve as a CK2 substrate are confined to different regions in eIF2beta and that it may act as an inhibitor on CK2alpha.

Full Text

The Full Text of this article is available as a PDF (298.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battistutta R., Sarno S., De Moliner E., Papinutto E., Zanotti G., Pinna L. A. The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J Biol Chem. 2000 Sep 22;275(38):29618–29622. doi: 10.1074/jbc.M004257200. [DOI] [PubMed] [Google Scholar]
  2. Bertomeu J. F., Guasch M. D., Plana M., Itarte E. Rat liver cytosol contains an inhibitor of the casein kinases 1 and 2 from the same source. FEBS Lett. 1981 Feb 23;124(2):261–264. doi: 10.1016/0014-5793(81)80151-2. [DOI] [PubMed] [Google Scholar]
  3. Bohnsack Markus T., Regener Kathrin, Schwappach Blanche, Saffrich Rainer, Paraskeva Efrosyni, Hartmann Enno, Görlich Dirk. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 2002 Nov 15;21(22):6205–6215. doi: 10.1093/emboj/cdf613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Channavajhala Padmalatha, Seldin David C. Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene. 2002 Aug 8;21(34):5280–5288. doi: 10.1038/sj.onc.1205640. [DOI] [PubMed] [Google Scholar]
  6. Cho Seongeun, Hoffman David W. Structure of the beta subunit of translation initiation factor 2 from the archaeon Methanococcus jannaschii: a representative of the eIF2beta/eIF5 family of proteins. Biochemistry. 2002 May 7;41(18):5730–5742. doi: 10.1021/bi011984n. [DOI] [PubMed] [Google Scholar]
  7. Das S., Maiti T., Das K., Maitra U. Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the beta-subunit of eIF2. J Biol Chem. 1997 Dec 12;272(50):31712–31718. doi: 10.1074/jbc.272.50.31712. [DOI] [PubMed] [Google Scholar]
  8. Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duncan R., Hershey J. W. Regulation of initiation factors during translational repression caused by serum depletion. Covalent modification. J Biol Chem. 1985 May 10;260(9):5493–5497. [PubMed] [Google Scholar]
  10. Gil C., Plana M., Riera M., Itarte E. Rat liver pp49, a protein that forms complexes with protein kinase CK2, is composed of the beta and the gamma subunits of translation initiation factor eIF-2. Biochem Biophys Res Commun. 1996 Aug 23;225(3):1052–1057. doi: 10.1006/bbrc.1996.1293. [DOI] [PubMed] [Google Scholar]
  11. Guerra B., Götz C., Wagner P., Montenarh M., Issinger O. G. The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene. 1997 Jun 5;14(22):2683–2688. doi: 10.1038/sj.onc.1201112. [DOI] [PubMed] [Google Scholar]
  12. Guerra B., Issinger O. G. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis. 1999 Feb;20(2):391–408. doi: 10.1002/(SICI)1522-2683(19990201)20:2<391::AID-ELPS391>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  13. Guerra B., Siemer S., Boldyreff B., Issinger O. G. Protein kinase CK2: evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles. FEBS Lett. 1999 Dec 3;462(3):353–357. doi: 10.1016/s0014-5793(99)01553-7. [DOI] [PubMed] [Google Scholar]
  14. Homma Miwako Kato, Li Dongxia, Krebs Edwin G., Yuasa Yasuhito, Homma Yoshimi. Association and regulation of casein kinase 2 activity by adenomatous polyposis coli protein. Proc Natl Acad Sci U S A. 2002 Apr 23;99(9):5959–5964. doi: 10.1073/pnas.092143199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Job D., Pirollet F., Cochet C., Chambaz E. M. Interaction of a casein kinase (G-type) with a specific endogenous inhibitor. Possible target for the regulation of a cyclic nucleotide-independent protein kinase activity by polyamines. FEBS Lett. 1979 Dec 15;108(2):508–512. doi: 10.1016/0014-5793(79)80599-2. [DOI] [PubMed] [Google Scholar]
  16. Kebache Sem, Zuo Dongmei, Chevet Eric, Larose Louise. Modulation of protein translation by Nck-1. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5406–5411. doi: 10.1073/pnas.082483399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimball S. R. Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol. 1999 Jan;31(1):25–29. doi: 10.1016/s1357-2725(98)00128-9. [DOI] [PubMed] [Google Scholar]
  18. Kimball S. R., Heinzinger N. K., Horetsky R. L., Jefferson L. S. Identification of interprotein interactions between the subunits of eukaryotic initiation factors eIF2 and eIF2B. J Biol Chem. 1998 Jan 30;273(5):3039–3044. doi: 10.1074/jbc.273.5.3039. [DOI] [PubMed] [Google Scholar]
  19. Laurino J. P., Thompson G. M., Pacheco E., Castilho B. A. The beta subunit of eukaryotic translation initiation factor 2 binds mRNA through the lysine repeats and a region comprising the C2-C2 motif. Mol Cell Biol. 1999 Jan;19(1):173–181. doi: 10.1128/mcb.19.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee J. H., Kim J. M., Kim M. S., Lee Y. T., Marshak D. R., Bae Y. S. The highly basic ribosomal protein L41 interacts with the beta subunit of protein kinase CKII and stimulates phosphorylation of DNA topoisomerase IIalpha by CKII. Biochem Biophys Res Commun. 1997 Sep 18;238(2):462–467. doi: 10.1006/bbrc.1997.7317. [DOI] [PubMed] [Google Scholar]
  21. Lin W. J., Tuazon P. T., Traugh J. A. Characterization of the catalytic subunit of casein kinase II expressed in Escherichia coli and regulation of activity. J Biol Chem. 1991 Mar 25;266(9):5664–5669. [PubMed] [Google Scholar]
  22. Litchfield David W. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J. 2003 Jan 1;369(Pt 1):1–15. doi: 10.1042/BJ20021469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Luis A. M., Izquierdo J. M., Ostronoff L. K., Salinas M., Santarén J. F., Cuezva J. M. Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial beta-F1-ATPase mRNA. J Biol Chem. 1993 Jan 25;268(3):1868–1875. [PubMed] [Google Scholar]
  24. Majumdar Romit, Bandyopadhyay Amitabha, Deng Haiteng, Maitra Umadas. Phosphorylation of mammalian translation initiation factor 5 (eIF5) in vitro and in vivo. Nucleic Acids Res. 2002 Mar 1;30(5):1154–1162. doi: 10.1093/nar/30.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meggio F., Boldyreff B., Issinger O. G., Pińna L. A. Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the beta-subunit. A study with calmodulin as phosphorylatable substrate. Biochemistry. 1994 Apr 12;33(14):4336–4342. doi: 10.1021/bi00180a030. [DOI] [PubMed] [Google Scholar]
  26. Meggio F., Boldyreff B., Marin O., Marchiori F., Perich J. W., Issinger O. G., Pinna L. A. The effect of polylysine on casein-kinase-2 activity is influenced by both the structure of the protein/peptide substrates and the subunit composition of the enzyme. Eur J Biochem. 1992 May 1;205(3):939–945. doi: 10.1111/j.1432-1033.1992.tb16860.x. [DOI] [PubMed] [Google Scholar]
  27. Meggio F., Negro A., Sarno S., Ruzzene M., Bertoli A., Sorgato M. C., Pinna L. A. Bovine prion protein as a modulator of protein kinase CK2. Biochem J. 2000 Nov 15;352(Pt 1):191–196. [PMC free article] [PubMed] [Google Scholar]
  28. Meggio F., Pinna L. A., Marchiori F., Borin G. Polyglutamyl peptides: a new class of inhibitors of type-2 casein kinases. FEBS Lett. 1983 Oct 17;162(2):235–238. doi: 10.1016/0014-5793(83)80762-5. [DOI] [PubMed] [Google Scholar]
  29. Meggio Flavio, Pinna Lorenzo A. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 2003 Mar;17(3):349–368. doi: 10.1096/fj.02-0473rev. [DOI] [PubMed] [Google Scholar]
  30. Messenger Moira M., Saulnier Ronald B., Gilchrist Andrew D., Diamond Phaedra, Gorbsky Gary J., Litchfield David W. Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions. J Biol Chem. 2002 Apr 8;277(25):23054–23064. doi: 10.1074/jbc.M200111200. [DOI] [PubMed] [Google Scholar]
  31. Miro Francesc A., Llorens Franc, Roher Nerea, Plana Maria, Gómez Néstor, Itarte Emilio. Persistent nuclear accumulation of protein kinase CK2 during the G1-phase of the cell cycle does not depend on the ERK1/2 pathway but requires active protein synthesis. Arch Biochem Biophys. 2002 Oct 15;406(2):165–172. doi: 10.1016/s0003-9861(02)00461-7. [DOI] [PubMed] [Google Scholar]
  32. Nika J., Rippel S., Hannig E. M. Biochemical analysis of the eIF2beta gamma complex reveals a structural function for eIF2alpha in catalyzed nucleotide exchange. J Biol Chem. 2001 Jan 12;276(2):1051–1056. doi: 10.1074/jbc.M007398200. [DOI] [PubMed] [Google Scholar]
  33. Ohtsuki K., Maekawa T., Harada S., Karino A., Morikawa Y., Ito M. Biochemical characterization of HIV-1 Rev as a potent activator of casein kinase II in vitro. FEBS Lett. 1998 May 29;428(3):235–240. doi: 10.1016/s0014-5793(98)00538-9. [DOI] [PubMed] [Google Scholar]
  34. Ohtsuki K., Nishikawa Y., Saito H., Munakata H., Kato T. DNA-binding sperm proteins with oligo-arginine clusters function as potent activators for egg CK-II. FEBS Lett. 1996 Jan 8;378(2):115–120. doi: 10.1016/0014-5793(95)01424-1. [DOI] [PubMed] [Google Scholar]
  35. Pinna Lorenzo A. Protein kinase CK2: a challenge to canons. J Cell Sci. 2002 Oct 15;115(Pt 20):3873–3878. doi: 10.1242/jcs.00074. [DOI] [PubMed] [Google Scholar]
  36. Riera M., Roher N., Miró F., Gil C., Trujillo R., Aguilera J., Plana M., Itarte E. Association of protein kinase CK2 with eukaryotic translation initiation factor eIF-2 and with grp94/endoplasmin. Mol Cell Biochem. 1999 Jan;191(1-2):97–104. [PubMed] [Google Scholar]
  37. Roher N., Miró F., Boldyreff B., Llorens F., Plana M., Issinger O. G., Itarte E. The C-terminal domain of human grp94 protects the catalytic subunit of protein kinase CK2 (CK2alpha) against thermal aggregation. Role of disulfide bonds. Eur J Biochem. 2001 Jan;268(2):429–436. doi: 10.1046/j.1432-1033.2001.01905.x. [DOI] [PubMed] [Google Scholar]
  38. Roher N., Sarno S., Miró F., Ruzzene M., Llorens F., Meggio F., Itarte E., Pinna L. A., Plana M. The carboxy-terminal domain of Grp94 binds to protein kinase CK2 alpha but not to CK2 holoenzyme. FEBS Lett. 2001 Sep 7;505(1):42–46. doi: 10.1016/s0014-5793(01)02781-8. [DOI] [PubMed] [Google Scholar]
  39. Ruzzene M., Brunati A. M., Sarno S., Donella-Deana A., Pinna L. A. Hematopoietic lineage cell specific protein 1 associates with and down-regulates protein kinase CK2. FEBS Lett. 1999 Nov 12;461(1-2):32–36. doi: 10.1016/s0014-5793(99)01409-x. [DOI] [PubMed] [Google Scholar]
  40. Ruzzene M., Brunati A. M., Sarno S., Marin O., Donella-Deana A., Pinna L. A. Ser/Thr phosphorylation of hematopoietic specific protein 1 (HS1): implication of protein kinase CK2. Eur J Biochem. 2000 May;267(10):3065–3072. doi: 10.1046/j.1432-1033.2000.01333.x. [DOI] [PubMed] [Google Scholar]
  41. Sarno Stefania, Moro Stefano, Meggio Flavio, Zagotto Giuseppe, Dal Ben Diego, Ghisellini Paola, Battistutta Roberto, Zanotti Giuseppe, Pinna Lorenzo A. Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacol Ther. 2002 Feb-Mar;93(2-3):159–168. doi: 10.1016/s0163-7258(02)00185-7. [DOI] [PubMed] [Google Scholar]
  42. Sonenberg Nahum, Dever Thomas E. Eukaryotic translation initiation factors and regulators. Curr Opin Struct Biol. 2003 Feb;13(1):56–63. doi: 10.1016/s0959-440x(03)00009-5. [DOI] [PubMed] [Google Scholar]
  43. Stigare J., Buddelmeijer N., Pigon A., Egyhazi E. A majority of casein kinase II alpha subunit is tightly bound to intranuclear components but not to the beta subunit. Mol Cell Biochem. 1993 Dec 8;129(1):77–85. doi: 10.1007/BF00926578. [DOI] [PubMed] [Google Scholar]
  44. Thompson G. M., Pacheco E., Melo E. O., Castilho B. A. Conserved sequences in the beta subunit of archaeal and eukaryal translation initiation factor 2 (eIF2), absent from eIF5, mediate interaction with eIF2gamma. Biochem J. 2000 May 1;347(Pt 3):703–709. [PMC free article] [PubMed] [Google Scholar]
  45. Tuazon P. T., Merrick W. C., Traugh J. A. Site-specific phosphorylation if initiation factor 2 by three cyclic nucleotide-independent protein kinases. J Biol Chem. 1980 Nov 25;255(22):10954–10958. [PubMed] [Google Scholar]
  46. Wang X., Paulin F. E., Campbell L. E., Gomez E., O'Brien K., Morrice N., Proud C. G. Eukaryotic initiation factor 2B: identification of multiple phosphorylation sites in the epsilon-subunit and their functions in vivo. EMBO J. 2001 Aug 15;20(16):4349–4359. doi: 10.1093/emboj/20.16.4349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Welsh G. I., Price N. T., Bladergroen B. A., Bloomberg G., Proud C. G. Identification of novel phosphorylation sites in the beta-subunit of translation initiation factor eIF-2. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1279–1288. doi: 10.1006/bbrc.1994.1843. [DOI] [PubMed] [Google Scholar]
  48. Yamaguchi Y., Wada T., Suzuki F., Takagi T., Hasegawa J., Handa H. Casein kinase II interacts with the bZIP domains of several transcription factors. Nucleic Acids Res. 1998 Aug 15;26(16):3854–3861. doi: 10.1093/nar/26.16.3854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zandomeni R., Zandomeni M. C., Shugar D., Weinmann R. Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J Biol Chem. 1986 Mar 5;261(7):3414–3419. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES