Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):761–768. doi: 10.1042/BJ20030885

Trafficking of Kv1.4 potassium channels: interdependence of a pore region determinant and a cytoplasmic C-terminal VXXSL determinant in regulating cell-surface trafficking.

Jing Zhu 1, Itaru Watanabe 1, Barbara Gomez 1, William B Thornhill 1
PMCID: PMC1223720  PMID: 12901718

Abstract

Kv1.4 and Kv1.1 potassium channel homomers have been shown to exhibit different intracellular trafficking programmes and cell-surface expression levels in cell lines: a determinant in the pore region of Kv1.4 and Kv1.1 [Zhu, Watanabe, Gomez and Thornhill (2001) J. Biol. Chem. 276, 39419-39427] and a cytoplasmic C-terminal VXXSL determinant on Kv1.4 [Li, Takimoto and Levitan (2000) J. Biol. Chem. 275, 11597-11602] have been described, which affected trafficking and cell-surface expression levels. In the present study, we examined whether trafficking pore determinants influenced any cytoplasmic C-terminal trafficking determinant. We found that removal of VXXSL from a Kv1.4 chimaera that contained the pore of Kv1.1 did not affect cell-surface trafficking. Therefore removal of the C-terminal VXXSL of Kv1.4 inhibited protein surface levels only in the presence of the Kv1.4 pore. In contrast, truncating the cytoplasmic C-terminus of Kv1.1 or truncating a Kv1.1 chimaera with the pore of Kv1.4, had little effect on surface protein levels. Furthermore, the subregion of the Kv1.4 pore trafficking determinant that was required for the inhibitory effect of VXXSL removal was mapped to a threonine residue in the deep pore region. Therefore the Kv1.4 pore determinant affected the trafficking and cell-surface levels directed by the C-terminal VXXSL determinant. Different Kv1 trafficking programmes would affect cell-surface expression levels either positively or negatively and also cell signalling. Cells may use differential trafficking programmes of membrane proteins as a post-translational mechanism to regulate surface protein levels and cell function.

Full Text

The Full Text of this article is available as a PDF (198.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bekele-Arcuri Z., Matos M. F., Manganas L., Strassle B. W., Monaghan M. M., Rhodes K. J., Trimmer J. S. Generation and characterization of subtype-specific monoclonal antibodies to K+ channel alpha- and beta-subunit polypeptides. Neuropharmacology. 1996;35(7):851–865. doi: 10.1016/0028-3908(96)00128-1. [DOI] [PubMed] [Google Scholar]
  2. Coetzee W. A., Amarillo Y., Chiu J., Chow A., Lau D., McCormack T., Moreno H., Nadal M. S., Ozaita A., Pountney D. Molecular diversity of K+ channels. Ann N Y Acad Sci. 1999 Apr 30;868:233–285. doi: 10.1111/j.1749-6632.1999.tb11293.x. [DOI] [PubMed] [Google Scholar]
  3. Deutsch Carol. Potassium channel ontogeny. Annu Rev Physiol. 2002;64:19–46. doi: 10.1146/annurev.physiol.64.081501.155934. [DOI] [PubMed] [Google Scholar]
  4. Dolly J. O., Parcej D. N. Molecular properties of voltage-gated K+ channels. J Bioenerg Biomembr. 1996 Jun;28(3):231–253. doi: 10.1007/BF02110698. [DOI] [PubMed] [Google Scholar]
  5. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  6. Ivanina T., Perets T., Thornhill W. B., Levin G., Dascal N., Lotan I. Phosphorylation by protein kinase A of RCK1 K+ channels expressed in Xenopus oocytes. Biochemistry. 1994 Jul 26;33(29):8786–8792. doi: 10.1021/bi00195a021. [DOI] [PubMed] [Google Scholar]
  7. Jan L. Y., Jan Y. N. Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci. 1997;20:91–123. doi: 10.1146/annurev.neuro.20.1.91. [DOI] [PubMed] [Google Scholar]
  8. Jiang Youxing, Lee Alice, Chen Jiayun, Ruta Vanessa, Cadene Martine, Chait Brian T., MacKinnon Roderick. X-ray structure of a voltage-dependent K+ channel. Nature. 2003 May 1;423(6935):33–41. doi: 10.1038/nature01580. [DOI] [PubMed] [Google Scholar]
  9. Li D., Takimoto K., Levitan E. S. Surface expression of Kv1 channels is governed by a C-terminal motif. J Biol Chem. 2000 Apr 21;275(16):11597–11602. doi: 10.1074/jbc.275.16.11597. [DOI] [PubMed] [Google Scholar]
  10. Manganas L. N., Trimmer J. S. Subunit composition determines Kv1 potassium channel surface expression. J Biol Chem. 2000 Sep 22;275(38):29685–29693. doi: 10.1074/jbc.M005010200. [DOI] [PubMed] [Google Scholar]
  11. Manganas L. N., Wang Q., Scannevin R. H., Antonucci D. E., Rhodes K. J., Trimmer J. S. Identification of a trafficking determinant localized to the Kv1 potassium channel pore. Proc Natl Acad Sci U S A. 2001 Nov 6;98(24):14055–14059. doi: 10.1073/pnas.241403898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Papazian D. M. Potassium channels: some assembly required. Neuron. 1999 May;23(1):7–10. doi: 10.1016/s0896-6273(00)80746-1. [DOI] [PubMed] [Google Scholar]
  13. Rehm H. Enzymatic deglycosylation of the dendrotoxin-binding protein. FEBS Lett. 1989 Apr 10;247(1):28–30. doi: 10.1016/0014-5793(89)81233-5. [DOI] [PubMed] [Google Scholar]
  14. Rhodes K. J., Strassle B. W., Monaghan M. M., Bekele-Arcuri Z., Matos M. F., Trimmer J. S. Association and colocalization of the Kvbeta1 and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes. J Neurosci. 1997 Nov 1;17(21):8246–8258. doi: 10.1523/JNEUROSCI.17-21-08246.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Scott V. E., Muniz Z. M., Sewing S., Lichtinghagen R., Parcej D. N., Pongs O., Dolly J. O. Antibodies specific for distinct Kv subunits unveil a heterooligomeric basis for subtypes of alpha-dendrotoxin-sensitive K+ channels in bovine brain. Biochemistry. 1994 Feb 22;33(7):1617–1623. doi: 10.1021/bi00173a001. [DOI] [PubMed] [Google Scholar]
  16. Shi G., Nakahira K., Hammond S., Rhodes K. J., Schechter L. E., Trimmer J. S. Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron. 1996 Apr;16(4):843–852. doi: 10.1016/s0896-6273(00)80104-x. [DOI] [PubMed] [Google Scholar]
  17. Shi G., Trimmer J. S. Differential asparagine-linked glycosylation of voltage-gated K+ channels in mammalian brain and in transfected cells. J Membr Biol. 1999 Apr 1;168(3):265–273. doi: 10.1007/s002329900515. [DOI] [PubMed] [Google Scholar]
  18. Stanley P. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol. 1989 Feb;9(2):377–383. doi: 10.1128/mcb.9.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stühmer W., Ruppersberg J. P., Schröter K. H., Sakmann B., Stocker M., Giese K. P., Perschke A., Baumann A., Pongs O. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 1989 Nov;8(11):3235–3244. doi: 10.1002/j.1460-2075.1989.tb08483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Trimmer J. S. Regulation of ion channel expression by cytoplasmic subunits. Curr Opin Neurobiol. 1998 Jun;8(3):370–374. doi: 10.1016/s0959-4388(98)80063-9. [DOI] [PubMed] [Google Scholar]
  21. Zhu J., Watanabe I., Gomez B., Thornhill W. B. Determinants involved in Kv1 potassium channel folding in the endoplasmic reticulum, glycosylation in the Golgi, and cell surface expression. J Biol Chem. 2001 Aug 3;276(42):39419–39427. doi: 10.1074/jbc.M107399200. [DOI] [PubMed] [Google Scholar]
  22. Zhu Jing, Watanabe Itaru, Gomez Barbara, Thornhill William B. Heteromeric Kv1 potassium channel expression: amino acid determinants involved in processing and trafficking to the cell surface. J Biol Chem. 2003 Apr 30;278(28):25558–25567. doi: 10.1074/jbc.M207984200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES