Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):721–728. doi: 10.1042/BJ20030752

Variation of the axial haem ligands and haem-binding motif as a probe of the Escherichia coli c-type cytochrome maturation (Ccm) system.

James W A Allen 1, Stuart J Ferguson 1
PMCID: PMC1223722  PMID: 12901720

Abstract

Cytochromes c are typically characterized by the covalent attachment of haem to polypeptide through two thioether bonds with the cysteine residues of a Cys-Xaa-Xaa-Cys-His peptide motif. In many Gram-negative bacteria, the haem is attached to the polypeptide by the periplasmically functioning cytochrome c maturation (Ccm) proteins. Exceptionally, Hydrogenobacter thermophilus cytochrome c552 can be expressed as a stable holocytochrome both in the cytoplasm of Escherichia coli in an apparently uncatalysed reaction and also in the periplasm in a Ccm-mediated reaction. In the present study we show that a Met60-->Ala variant of c552, which does not have the usual distal methionine ligand to the haem iron of the mature cytochrome, can be made in the periplasm by the Ccm system. However, no holocytochrome could be detected when this variant was expressed cytoplasmically. These data highlight differences between the two modes of cytochrome c assembly. In addition, we report investigations of haem attachment to cytochromes altered to have the special Cys-Trp-Ser-Cys-Lys haem-binding motif, and Cys-Trp-Ser-Cys-His and Cys-Trp-Ala-Cys-His analogues, of the active-site haem of nitrite reductase NrfA.

Full Text

The Full Text of this article is available as a PDF (133.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen James W. A., Daltrop Oliver, Stevens Julie M., Ferguson Stuart J. C-type cytochromes: diverse structures and biogenesis systems pose evolutionary problems. Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):255–266. doi: 10.1098/rstb.2002.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen James W. A., Tomlinson Esther J., Hong Lin, Ferguson Stuart J. The Escherichia coli cytochrome c maturation (Ccm) system does not detectably attach heme to single cysteine variants of an apocytochrome c. J Biol Chem. 2002 Jun 4;277(37):33559–33563. doi: 10.1074/jbc.M204963200. [DOI] [PubMed] [Google Scholar]
  3. Arslan E., Schulz H., Zufferey R., Künzler P., Thöny-Meyer L. Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem Biophys Res Commun. 1998 Oct 29;251(3):744–747. doi: 10.1006/bbrc.1998.9549. [DOI] [PubMed] [Google Scholar]
  4. Bamford Vicki A., Angove Hayley C., Seward Harriet E., Thomson Andrew J., Cole Jeffrey A., Butt Julea N., Hemmings Andrew M., Richardson David J. Structure and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli. Biochemistry. 2002 Mar 5;41(9):2921–2931. doi: 10.1021/bi015765d. [DOI] [PubMed] [Google Scholar]
  5. Bamford Vicki A., Bruno Stefano, Rasmussen Tim, Appia-Ayme Corinne, Cheesman Myles R., Berks Ben C., Hemmings Andrew M. Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J. 2002 Nov 1;21(21):5599–5610. doi: 10.1093/emboj/cdf566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barker P. D., Bertini I., Del Conte R., Ferguson S. J., Hajieva P., Tomlinson E., Turano P., Viezzoli M. S. A further clue to understanding the mobility of mitochondrial yeast cytochrome c: a (15)N T1rho investigation of the oxidized and reduced species. Eur J Biochem. 2001 Aug;268(16):4468–4476. doi: 10.1046/j.1432-1327.2001.02369.x. [DOI] [PubMed] [Google Scholar]
  7. Barker P. D., Ferguson S. J. Still a puzzle: why is haem covalently attached in c-type cytochromes? Structure. 1999 Dec 15;7(12):R281–R290. doi: 10.1016/s0969-2126(00)88334-3. [DOI] [PubMed] [Google Scholar]
  8. Barker P. D., Freund S. M. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions. Biochemistry. 1996 Oct 22;35(42):13627–13635. doi: 10.1021/bi961128p. [DOI] [PubMed] [Google Scholar]
  9. Barker P. D., Nerou E. P., Cheesman M. R., Thomson A. J., de Oliveira P., Hill H. A. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 1. Spectroscopic and electrochemical characterization of the electronic properties. Biochemistry. 1996 Oct 22;35(42):13618–13626. doi: 10.1021/bi961127x. [DOI] [PubMed] [Google Scholar]
  10. Daltrop Oliver, Allen James W. A., Willis Anthony C., Ferguson Stuart J. In vitro formation of a c-type cytochrome. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7872–7876. doi: 10.1073/pnas.132259099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Daltrop Oliver, Stevens Julie M., Higham Christopher W., Ferguson Stuart J. The CcmE protein of the c-type cytochrome biogenesis system: unusual in vitro heme incorporation into apo-CcmE and transfer from holo-CcmE to apocytochrome. Proc Natl Acad Sci U S A. 2002 Jul 15;99(15):9703–9708. doi: 10.1073/pnas.152120699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Deshmukh M., Brasseur G., Daldal F. Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes. Mol Microbiol. 2000 Jan;35(1):123–138. doi: 10.1046/j.1365-2958.2000.01683.x. [DOI] [PubMed] [Google Scholar]
  13. Eaves D. J., Grove J., Staudenmann W., James P., Poole R. K., White S. A., Griffiths I., Cole J. A. Involvement of products of the nrfEFG genes in the covalent attachment of haem c to a novel cysteine-lysine motif in the cytochrome c552 nitrite reductase from Escherichia coli. Mol Microbiol. 1998 Apr;28(1):205–216. doi: 10.1046/j.1365-2958.1998.00792.x. [DOI] [PubMed] [Google Scholar]
  14. Einsle O., Messerschmidt A., Stach P., Bourenkov G. P., Bartunik H. D., Huber R., Kroneck P. M. Structure of cytochrome c nitrite reductase. Nature. 1999 Jul 29;400(6743):476–480. doi: 10.1038/22802. [DOI] [PubMed] [Google Scholar]
  15. Fabianek R. A., Hennecke H., Thöny-Meyer L. Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli. FEMS Microbiol Rev. 2000 Jul;24(3):303–316. doi: 10.1111/j.1574-6976.2000.tb00544.x. [DOI] [PubMed] [Google Scholar]
  16. Fülöp V., Moir J. W., Ferguson S. J., Hajdu J. The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1. Cell. 1995 May 5;81(3):369–377. doi: 10.1016/0092-8674(95)90390-9. [DOI] [PubMed] [Google Scholar]
  17. Gabbert K. K., Goldman B. S., Kranz R. G. Differential levels of specific cytochrome c biogenesis proteins in response to oxygen: analysis of the ccl operon in Rhodobacter capsulatus. J Bacteriol. 1997 Sep;179(17):5422–5428. doi: 10.1128/jb.179.17.5422-5428.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grovc J., Busby S., Cole J. The role of the genes nrf EFG and ccmFH in cytochrome c biosynthesis in Escherichia coli. Mol Gen Genet. 1996 Sep 13;252(3):332–341. doi: 10.1007/BF02173779. [DOI] [PubMed] [Google Scholar]
  19. Grove J., Tanapongpipat S., Thomas G., Griffiths L., Crooke H., Cole J. Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol. 1996 Feb;19(3):467–481. doi: 10.1046/j.1365-2958.1996.383914.x. [DOI] [PubMed] [Google Scholar]
  20. Hasegawa J., Yoshida T., Yamazaki T., Sambongi Y., Yu Y., Igarashi Y., Kodama T., Yamazaki K., Kyogoku Y., Kobayashi Y. Solution structure of thermostable cytochrome c-552 from Hydrogenobacter thermophilus determined by 1H-NMR spectroscopy. Biochemistry. 1998 Jul 7;37(27):9641–9649. doi: 10.1021/bi9803067. [DOI] [PubMed] [Google Scholar]
  21. Herbaud M. L., Aubert C., Durand M. C., Guerlesquin F., Thöny-Meyer L., Dolla A. Escherichia coli is able to produce heterologous tetraheme cytochrome c(3) when the ccm genes are co-expressed. Biochim Biophys Acta. 2000 Aug 31;1481(1):18–24. doi: 10.1016/s0167-4838(00)00117-5. [DOI] [PubMed] [Google Scholar]
  22. Hussain H., Grove J., Griffiths L., Busby S., Cole J. A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol. 1994 Apr;12(1):153–163. doi: 10.1111/j.1365-2958.1994.tb01004.x. [DOI] [PubMed] [Google Scholar]
  23. JANSSON J. A. A DIRECT SPECTROPHOTOMETRIC ASSAY FOR PENICILLIN BETA-LACTAMASE (PENICILLINASE). Biochim Biophys Acta. 1965 Apr 26;99:171–172. doi: 10.1016/s0926-6593(65)80018-2. [DOI] [PubMed] [Google Scholar]
  24. Karan Elizabeth F., Russell Brandy S., Bren Kara L. Characterization of Hydrogenobacter thermophilus cytochromes c(552 )expressed in the cytoplasm and periplasm of Escherichia coli. J Biol Inorg Chem. 2001 Sep 8;7(3):260–272. doi: 10.1007/s007750100292. [DOI] [PubMed] [Google Scholar]
  25. Kellogg Jason A., Bren Kara L. Characterization of recombinant horse cytochrome c synthesized with the assistance of Escherichia coli cytochrome c maturation factors. Biochim Biophys Acta. 2002 Dec 16;1601(2):215–221. doi: 10.1016/s1570-9639(02)00471-5. [DOI] [PubMed] [Google Scholar]
  26. Kranz R., Lill R., Goldman B., Bonnard G., Merchant S. Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol. 1998 Jul;29(2):383–396. doi: 10.1046/j.1365-2958.1998.00869.x. [DOI] [PubMed] [Google Scholar]
  27. Lawson D. M., Stevenson C. E., Andrew C. R., Eady R. R. Unprecedented proximal binding of nitric oxide to heme: implications for guanylate cyclase. EMBO J. 2000 Nov 1;19(21):5661–5671. doi: 10.1093/emboj/19.21.5661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Le Rudulier D., Gloux K., Riou N. Identification of an osmotically induced periplasmic glycine betaine-binding protein from Rhizobium meliloti. Biochim Biophys Acta. 1991 Jan 30;1061(2):197–205. doi: 10.1016/0005-2736(91)90285-g. [DOI] [PubMed] [Google Scholar]
  29. Leys D., Backers K., Meyer T. E., Hagen W. R., Cusanovich M. A., Van Beeumen J. J. Crystal structures of an oxygen-binding cytochrome c from Rhodobacter sphaeroides. J Biol Chem. 2000 May 26;275(21):16050–16056. doi: 10.1074/jbc.275.21.16050. [DOI] [PubMed] [Google Scholar]
  30. Lu Y., Casimiro D. R., Bren K. L., Richards J. H., Gray H. B. Structurally engineered cytochromes with unusual ligand-binding properties: expression of Saccharomyces cerevisiae Met-80-->Ala iso-1-cytochrome c. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11456–11459. doi: 10.1073/pnas.90.24.11456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McCarthy A. A., Haebel P. W., Törrönen A., Rybin V., Baker E. N., Metcalf P. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Biol. 2000 Mar;7(3):196–199. doi: 10.1038/73295. [DOI] [PubMed] [Google Scholar]
  32. McGuirl Michele A., Lee Jennifer C., Lyubovitsky Julia G., Thanyakoop Chalita, Richards John H., Gray Harry B., Winkler Jay R. Cloning, heterologous expression, and characterization of recombinant class II cytochromes c from Rhodopseudomonas palustris. Biochim Biophys Acta. 2003 Jan 2;1619(1):23–28. doi: 10.1016/s0304-4165(02)00437-3. [DOI] [PubMed] [Google Scholar]
  33. Page M. D., Ferguson S. J. A bacterial c-type cytochrome can be translocated to the periplasm as an apo form; the biosynthesis of cytochrome cd1 (nitrite reductase) from Paracoccus denitrificans. Mol Microbiol. 1989 May;3(5):653–661. doi: 10.1111/j.1365-2958.1989.tb00213.x. [DOI] [PubMed] [Google Scholar]
  34. Page M. D., Sambongi Y., Ferguson S. J. Contrasting routes of c-type cytochrome assembly in mitochondria, chloroplasts and bacteria. Trends Biochem Sci. 1998 Mar;23(3):103–108. doi: 10.1016/s0968-0004(98)01173-6. [DOI] [PubMed] [Google Scholar]
  35. Pettigrew G. W., Leaver J. L., Meyer T. E., Ryle A. P. Purification, properties and amino acid sequence of atypical cytochrome c from two protozoa, Euglena gracilis and Crithidia oncopelti. Biochem J. 1975 May;147(2):291–302. doi: 10.1042/bj1470291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Priest J. W., Hajduk S. L. Cytochrome c reductase purified from Crithidia fasciculata contains an atypical cytochrome c1. J Biol Chem. 1992 Oct 5;267(28):20188–20195. [PubMed] [Google Scholar]
  37. Richter Carsten D., Allen James W. A., Higham Christopher W., Koppenhofer Alrik, Zajicek Richard S., Watmough Nicholas J., Ferguson Stuart J. Cytochrome cd1, reductive activation and kinetic analysis of a multifunctional respiratory enzyme. J Biol Chem. 2001 Nov 14;277(5):3093–3100. doi: 10.1074/jbc.M108944200. [DOI] [PubMed] [Google Scholar]
  38. Ríos-Velázquez C., Cox R. L., Donohue T. J. Characterization of Rhodobacter sphaeroides cytochrome c(2) proteins with altered heme attachment sites. Arch Biochem Biophys. 2001 May 15;389(2):234–244. doi: 10.1006/abbi.2001.2330. [DOI] [PubMed] [Google Scholar]
  39. Sambongi Y., Ferguson S. J. Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds. FEBS Lett. 1996 Dec 2;398(2-3):265–268. doi: 10.1016/s0014-5793(96)01256-2. [DOI] [PubMed] [Google Scholar]
  40. Sambongi Y., Ferguson S. J. Synthesis of holo Paracoccus denitrificans cytochrome c550 requires targeting to the periplasm whereas that of holo Hydrogenobacter thermophilus cytochrome c552 does not. Implications for c-type cytochrome biogenesis. FEBS Lett. 1994 Feb 28;340(1-2):65–70. doi: 10.1016/0014-5793(94)80174-6. [DOI] [PubMed] [Google Scholar]
  41. Sambongi Y., Stoll R., Ferguson S. J. Alteration of haem-attachment and signal-cleavage sites for Paracoccus denitrificans cytochrome C550 probes pathway of c-type cytochrome biogenesis in Escherichia coli. Mol Microbiol. 1996 Mar;19(6):1193–1204. doi: 10.1111/j.1365-2958.1996.tb02465.x. [DOI] [PubMed] [Google Scholar]
  42. Sanders C., Lill H. Expression of prokaryotic and eukaryotic cytochromes c in Escherichia coli. Biochim Biophys Acta. 2000 Jul 20;1459(1):131–138. doi: 10.1016/s0005-2728(00)00122-5. [DOI] [PubMed] [Google Scholar]
  43. Silkstone Gary, Stanway Glyn, Brzezinski Peter, Wilson Michael T. Production and characterisation of Met80X mutants of yeast iso-1-cytochrome c: spectral, photochemical and binding studies on the ferrous derivatives. Biophys Chem. 2002 Jul 10;98(1-2):65–77. doi: 10.1016/s0301-4622(02)00085-6. [DOI] [PubMed] [Google Scholar]
  44. Stevens Julie M., Daltrop Oliver, Higham Christopher W., Ferguson Stuart J. Interaction of heme with variants of the heme chaperone CcmE carrying active site mutations and a cleavable N-terminal His tag. J Biol Chem. 2003 Mar 25;278(23):20500–20506. doi: 10.1074/jbc.M212925200. [DOI] [PubMed] [Google Scholar]
  45. Thöny-Meyer L., Fischer F., Künzler P., Ritz D., Hennecke H. Escherichia coli genes required for cytochrome c maturation. J Bacteriol. 1995 Aug;177(15):4321–4326. doi: 10.1128/jb.177.15.4321-4326.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thöny-Meyer L. Haem-polypeptide interactions during cytochrome c maturation. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):316–324. doi: 10.1016/s0005-2728(00)00167-5. [DOI] [PubMed] [Google Scholar]
  47. Tomlinson E. J., Ferguson S. J. Conversion of a c type cytochrome to a b type that spontaneously forms in vitro from apo protein and heme: implications for c type cytochrome biogenesis and folding. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5156–5160. doi: 10.1073/pnas.090089397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tomlinson E. J., Ferguson S. J. Loss of either of the two heme-binding cysteines from a class I c-type cytochrome has a surprisingly small effect on physicochemical properties. J Biol Chem. 2000 Oct 20;275(42):32530–32534. doi: 10.1074/jbc.M004022200. [DOI] [PubMed] [Google Scholar]
  49. Wain R., Pertinhez T. A., Tomlinson E. J., Hong L., Dobson C. M., Ferguson S. J., Smith L. J. The cytochrome c fold can be attained from a compact apo state by occupancy of a nascent heme binding site. J Biol Chem. 2001 Oct 2;276(49):45813–45817. doi: 10.1074/jbc.M107572200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES