Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):593–602. doi: 10.1042/BJ20030812

Structure and transcriptional regulation of the Nat2 gene encoding for the drug-metabolizing enzyme arylamine N-acetyltransferase type 2 in mice.

Sotiria Boukouvala 1, Naomi Price 1, Kathryn E Plant 1, Edith Sim 1
PMCID: PMC1223723  PMID: 12904181

Abstract

Arylamine N-acetyltransferases (NATs) are polymorphic enzymes, well-known for their role in the metabolism of drugs and carcinogens. Mice have three NAT isoenzymes, of which NAT2 is postulated to be involved in endogenous, as well as xenobiotic, metabolism. To understand expression of the murine Nat2 gene, we have analysed its structure and transcriptional regulation. We have accurately mapped the transcription initiation site 6.5 kb upstream of the coding region of the gene, adjacent to a recently described non-coding exon. Transcription was demonstrated to start from this region in embryonic and adult liver, spleen, submaxillary gland, kidney, brain, thymus, lung and placenta, but not in the heart. Database searches and analyses of cDNA by PCR suggested alternative splicing of the single 6.2 kb intron of Nat2, and determined the position of the polyadenylation signal at 0.44 kb downstream of the coding region of the gene. Examination of the 13 kb sequence flanking the coding and non-coding exons of Nat2 revealed a single promoter, located close to the transcription-initiation site, and indicated regions likely to harbour control elements. The Nat2 promoter consists of an atypical TATA box and a Sp1 [SV40 (simian virus 40) protein 1] box identical with that found in many housekeeping gene promoters. Activity of the Nat2 promoter was severely reduced by deletion or mutation of either of these two elements, whereas the region of the Sp1 box bound cellular protein and resisted DNase I digestion. Finally, the ability of the promoter region to bind cellular protein was reduced by competition with oligonucleotides bearing the Sp1 consensus sequence.

Full Text

The Full Text of this article is available as a PDF (304.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boukouvala Sotiria, Price Naomi, Sim Edith. Identification and functional characterization of novel polymorphisms associated with the genes for arylamine N-acetyltransferases in mice. Pharmacogenetics. 2002 Jul;12(5):385–394. doi: 10.1097/00008571-200207000-00006. [DOI] [PubMed] [Google Scholar]
  2. Butcher N. J., Boukouvala S., Sim E., Minchin R. F. Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J. 2002;2(1):30–42. doi: 10.1038/sj.tpj.6500053. [DOI] [PubMed] [Google Scholar]
  3. Chung J. G., Levy G. N., Weber W. W. Distribution of 2-aminofluorene and p-aminobenzoic acid N-acetyltransferase activity in tissues of C57BL/6J rapid and B6.A-NatS slow acetylator congenic mice. Drug Metab Dispos. 1993 Nov-Dec;21(6):1057–1063. [PubMed] [Google Scholar]
  4. Cornish V. A., Pinter K., Boukouvala S., Johnson N., Labrousse C., Payton M., Priddle H., Smith A. J. H., Sim E. Generation and analysis of mice with a targeted disruption of the arylamine N-acetyltransferase type 2 gene. Pharmacogenomics J. 2003;3(3):169–177. doi: 10.1038/sj.tpj.6500170. [DOI] [PubMed] [Google Scholar]
  5. Ebisawa T., Deguchi T. Structure and restriction fragment length polymorphism of genes for human liver arylamine N-acetyltransferases. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1252–1257. doi: 10.1016/0006-291x(91)90676-x. [DOI] [PubMed] [Google Scholar]
  6. Estrada-Rodgers L., Levy G. N., Weber W. W. Characterization of a hormone response element in the mouse N-acetyltransferase 2 (Nat2*) promoter. Gene Expr. 1998;7(1):13–24. [PMC free article] [PubMed] [Google Scholar]
  7. Fakis G., Boukouvala S., Buckle V., Payton M., Denning C., Sim E. Chromosome mapping of the genes for murine arylamine N-acetyltransferases (NATs), enzymes involved in the metabolism of carcinogens: identification of a novel upstream noncoding exon for murine Nat2. Cytogenet Cell Genet. 2000;90(1-2):134–138. doi: 10.1159/000015648. [DOI] [PubMed] [Google Scholar]
  8. Fretland A. J., Doll M. A., Gray K., Feng Y., Hein D. W. Cloning, sequencing, and recombinant expression of NAT1, NAT2, and NAT3 derived from the C3H/HeJ (rapid) and A/HeJ (slow) acetylator inbred mouse: functional characterization of the activation and deactivation of aromatic amine carcinogens. Toxicol Appl Pharmacol. 1997 Feb;142(2):360–366. doi: 10.1006/taap.1996.8036. [DOI] [PubMed] [Google Scholar]
  9. Geiger A., Decaux J. F., Burcelin R., Le Cam A., Salazar G., Charron M. J., Girard J., Kervran A. Structural and functional characterizations of the 5'-flanking region of the mouse glucagon receptor gene: comparison with the rat gene. Biochem Biophys Res Commun. 2000 Jun 16;272(3):912–921. doi: 10.1006/bbrc.2000.2876. [DOI] [PubMed] [Google Scholar]
  10. Hein D. W., Doll M. A., Fretland A. J., Leff M. A., Webb S. J., Xiao G. H., Devanaboyina U. S., Nangju N. A., Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev. 2000 Jan;9(1):29–42. [PubMed] [Google Scholar]
  11. Martell K. J., Vatsis K. P., Weber W. W. Molecular genetic basis of rapid and slow acetylation in mice. Mol Pharmacol. 1991 Aug;40(2):218–227. [PubMed] [Google Scholar]
  12. McQueen Charlene A., Chau Binh. Neonatal ontogeny of murine arylamine N-acetyltransferases: implications for arylamine genotoxicity. Toxicol Sci. 2003 Apr 15;73(2):279–286. doi: 10.1093/toxsci/kfg086. [DOI] [PubMed] [Google Scholar]
  13. Minchin R. F. Acetylation of p-aminobenzoylglutamate, a folic acid catabolite, by recombinant human arylamine N-acetyltransferase and U937 cells. Biochem J. 1995 Apr 1;307(Pt 1):1–3. doi: 10.1042/bj3070001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mitchell M. K., Futscher B. W., McQueen C. A. Developmental expression of N-acetyltransferases in C57BI/6 mice. Drug Metab Dispos. 1999 Feb;27(2):261–264. [PubMed] [Google Scholar]
  15. Mummidi S., Ahuja S. S., McDaniel B. L., Ahuja S. K. The human CC chemokine receptor 5 (CCR5) gene. Multiple transcripts with 5'-end heterogeneity, dual promoter usage, and evidence for polymorphisms within the regulatory regions and noncoding exons. J Biol Chem. 1997 Dec 5;272(49):30662–30671. doi: 10.1074/jbc.272.49.30662. [DOI] [PubMed] [Google Scholar]
  16. Palmiter R. D., Sandgren E. P., Avarbock M. R., Allen D. D., Brinster R. L. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):478–482. doi: 10.1073/pnas.88.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Payton M., Smelt V., Upton A., Sim E. A method for genotyping murine arylamine N-acetyltransferase type 2 (NAT2): a gene expressed in preimplantation embryonic stem cells encoding an enzyme acetylating the folate catabolite p-aminobenzoylglutamate. Biochem Pharmacol. 1999 Sep 1;58(5):779–785. doi: 10.1016/s0006-2952(99)00171-9. [DOI] [PubMed] [Google Scholar]
  18. Rampazzo A., Pivotto F., Occhi G., Tiso N., Bortoluzzi S., Rowen L., Hood L., Nava A., Danieli G. A. Characterization of C14orf4, a novel intronless human gene containing a polyglutamine repeat, mapped to the ARVD1 critical region. Biochem Biophys Res Commun. 2000 Nov 30;278(3):766–774. doi: 10.1006/bbrc.2000.3883. [DOI] [PubMed] [Google Scholar]
  19. Sim E., Pinter K., Mushtaq A., Upton A., Sandy J., Bhakta S., Noble M. Arylamine N-acetyltransferases: a pharmacogenomic approach to drug metabolism and endogenous function. Biochem Soc Trans. 2003 Jun;31(Pt 3):615–619. doi: 10.1042/bst0310615. [DOI] [PubMed] [Google Scholar]
  20. Sinclair J. C., Delgoda R., Noble M. E., Jarmin S., Goh N. K., Sim E. Purification, characterization, and crystallization of an N-hydroxyarylamine O-acetyltransferase from Salmonella typhimurium. Protein Expr Purif. 1998 Apr;12(3):371–380. doi: 10.1006/prep.1997.0856. [DOI] [PubMed] [Google Scholar]
  21. Smith C. W., Patton J. G., Nadal-Ginard B. Alternative splicing in the control of gene expression. Annu Rev Genet. 1989;23:527–577. doi: 10.1146/annurev.ge.23.120189.002523. [DOI] [PubMed] [Google Scholar]
  22. Sosinsky A., Glusman G., Lancet D. The genomic structure of human olfactory receptor genes. Genomics. 2000 Nov 15;70(1):49–61. doi: 10.1006/geno.2000.6363. [DOI] [PubMed] [Google Scholar]
  23. Stanley L. A., Copp A. J., Pope J., Rolls S., Smelt V., Perry V. H., Sim E. Immunochemical detection of arylamine N-acetyltransferase during mouse embryonic development and in adult mouse brain. Teratology. 1998 Nov;58(5):174–182. doi: 10.1002/(SICI)1096-9926(199811)58:5<174::AID-TERA3>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  24. Stanley L. A., Mills I. G., Sim E. Localization of polymorphic N-acetyltransferase (NAT2) in tissues of inbred mice. Pharmacogenetics. 1997 Apr;7(2):121–130. doi: 10.1097/00008571-199704000-00005. [DOI] [PubMed] [Google Scholar]
  25. Tavianini M. A., Hayes T. E., Magazin M. D., Minth C. D., Dixon J. E. Isolation, characterization, and DNA sequence of the rat somatostatin gene. J Biol Chem. 1984 Oct 10;259(19):11798–11803. [PubMed] [Google Scholar]
  26. Ward A., Summers M. J., Sim E. Purification of recombinant human N-acetyltransferase type 1 (NAT1) expressed in E. coli and characterization of its potential role in folate metabolism. Biochem Pharmacol. 1995 Jun 16;49(12):1759–1767. doi: 10.1016/0006-2952(95)00087-g. [DOI] [PubMed] [Google Scholar]
  27. Windmill K. F., McKinnon R. A., Zhu X., Gaedigk A., Grant D. M., McManus M. E. The role of xenobiotic metabolizing enzymes in arylamine toxicity and carcinogenesis: functional and localization studies. Mutat Res. 1997 May 12;376(1-2):153–160. doi: 10.1016/s0027-5107(97)00038-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES