Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):643–651. doi: 10.1042/BJ20030505

Calpain cleavage of the B isoform of Ins(1,4,5)P3 3-kinase separates the catalytic domain from the membrane anchoring domain.

Krupa Pattni 1, Thomas H Millard 1, George Banting 1
PMCID: PMC1223724  PMID: 12906709

Abstract

Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] is one of the key intracellular second messengers in cells and mobilizes Ca2+ stores in the ER (endoplasmic reticulum). Ins(1,4,5)P3 has a short half-life within the cell, and is rapidly metabolized through one of two pathways, one of which involves further phosphorylation of the inositol ring: Ins(1,4,5)P3 3-kinase (IP3-3K) phosphorylates Ins(1,4,5)P3, resulting in the formation of inositol (1,3,4,5)-tetrakisphosphate [Ins(1,3,4,5)P4]. There are three known isoforms of IP3-3K, designated IP3-3KA, IP3-3KB and IP3-3KC. These have differing N-termini, but highly conserved C-termini harbouring the catalytic domain. The three IP3-3K isoforms have different subcellular locations and the B-kinase is uniquely present in both cytosolic and membrane-bound pools. As it is the N-terminus of the B-kinase that differs most from the A- and C-kinases, we have hypothesized that this portion of the protein may be responsible for membrane localization. Although there are no known membrane-targeting protein motifs within the sequence of IP3-3KB, it is found to be tightly associated with the ER membrane. Here, we show that specific regions of the N-terminus of IP3-3KB are necessary and sufficient for efficient membrane localization of the protein. We also report that, in the presence of Ca2+, the kinase domain of IP3-3KB is cleaved from the membrane-anchoring region by calpain.

Full Text

The Full Text of this article is available as a PDF (278.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  2. Bertsch U., Haefs M., Möller M., Deschermeier C., Fanick W., Kitzerow A., Ozaki S., Meyer H. E., Mayr G. W. A novel A-isoform-like inositol 1,4,5-trisphosphate 3-kinase from chicken erythrocytes exhibits alternative splicing and conservation of intron positions between vertebrates and invertebrates. Gene. 1999 Mar 4;228(1-2):61–71. doi: 10.1016/s0378-1119(99)00018-9. [DOI] [PubMed] [Google Scholar]
  3. Choi K. Y., Kim H. K., Lee S. Y., Moon K. H., Sim S. S., Kim J. W., Chung H. K., Rhee S. G. Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase. Science. 1990 Apr 6;248(4951):64–66. doi: 10.1126/science.2157285. [DOI] [PubMed] [Google Scholar]
  4. Communi D., Dewaste V., Erneux C. Calcium-calmodulin-dependent protein kinase II and protein kinase C-mediated phosphorylation and activation of D-myo-inositol 1,4, 5-trisphosphate 3-kinase B in astrocytes. J Biol Chem. 1999 May 21;274(21):14734–14742. doi: 10.1074/jbc.274.21.14734. [DOI] [PubMed] [Google Scholar]
  5. Communi D., Takazawa K., Erneux C. Lys-197 and Asp-414 are critical residues for binding of ATP/Mg2+ by rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1993 May 1;291(Pt 3):811–816. doi: 10.1042/bj2910811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuff J. A., Clamp M. E., Siddiqui A. S., Finlay M., Barton G. J. JPred: a consensus secondary structure prediction server. Bioinformatics. 1998;14(10):892–893. doi: 10.1093/bioinformatics/14.10.892. [DOI] [PubMed] [Google Scholar]
  7. Cullen P. J., Hsuan J. J., Truong O., Letcher A. J., Jackson T. R., Dawson A. P., Irvine R. F. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature. 1995 Aug 10;376(6540):527–530. doi: 10.1038/376527a0. [DOI] [PubMed] [Google Scholar]
  8. Dewaste V., Pouillon V., Moreau C., Shears S., Takazawa K., Erneux C. Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C. Biochem J. 2000 Dec 1;352(Pt 2):343–351. [PMC free article] [PubMed] [Google Scholar]
  9. Dewaste Valérie, Moreau Colette, De Smedt Florence, Bex Françoise, De Smedt Humbert, Wuytack Frank, Missiaen Ludwig, Erneux Christophe. The three isoenzymes of human inositol-1,4,5-trisphosphate 3-kinase show specific intracellular localization but comparable Ca2+ responses on transfection in COS-7 cells. Biochem J. 2003 Aug 15;374(Pt 1):41–49. doi: 10.1042/BJ20021963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dewaste Valérie, Roymans Dirk, Moreau Colette, Erneux Christophe. Cloning and expression of a full-length cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase B. Biochem Biophys Res Commun. 2002 Feb 22;291(2):400–405. doi: 10.1006/bbrc.2002.6456. [DOI] [PubMed] [Google Scholar]
  11. Erneux C., Govaerts C., Communi D., Pesesse X. The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):185–199. doi: 10.1016/s0005-2760(98)00132-5. [DOI] [PubMed] [Google Scholar]
  12. Irvine R. F. 'Quantal' Ca2+ release and the control of Ca2+ entry by inositol phosphates--a possible mechanism. FEBS Lett. 1990 Apr 9;263(1):5–9. doi: 10.1016/0014-5793(90)80692-c. [DOI] [PubMed] [Google Scholar]
  13. Irvine R. F., Letcher A. J., Heslop J. P., Berridge M. J. The inositol tris/tetrakisphosphate pathway--demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature. 1986 Apr 17;320(6063):631–634. doi: 10.1038/320631a0. [DOI] [PubMed] [Google Scholar]
  14. Irvine R. F., McNulty T. J., Schell M. J. Inositol 1,3,4,5-tetrakisphosphate as a second messenger--a special role in neurones? Chem Phys Lipids. 1999 Apr;98(1-2):49–57. doi: 10.1016/s0009-3084(99)00017-1. [DOI] [PubMed] [Google Scholar]
  15. Kakkar R., Raju R. V., Sharma R. K. Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1). Cell Mol Life Sci. 1999 Jul;55(8-9):1164–1186. doi: 10.1007/s000180050364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee S. Y., Sim S. S., Kim J. W., Moon K. H., Kim J. H., Rhee S. G. Purification and properties of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain. Susceptibility to calpain. J Biol Chem. 1990 Jun 5;265(16):9434–9440. [PubMed] [Google Scholar]
  17. Mezna M., Michelangeli F. The effects of inositol 1,4,5-trisphosphate (InsP3) analogues on the transient kinetics of Ca2+ release from cerebellar microsomes. InsP3 analogues act as partial agonists. J Biol Chem. 1996 Dec 13;271(50):31818–31823. doi: 10.1074/jbc.271.50.31818. [DOI] [PubMed] [Google Scholar]
  18. Michelangeli F., Mezna M., Tovey S., Sayers L. G. Pharmacological modulators of the inositol 1,4,5-trisphosphate receptor. Neuropharmacology. 1995 Sep;34(9):1111–1122. doi: 10.1016/0028-3908(95)00053-9. [DOI] [PubMed] [Google Scholar]
  19. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  20. Millard T. H., Cullen P. J., Banting G. Effects of elevated expression of inositol 1,4,5-trisphosphate 3-kinase B on Ca2+ homoeostasis in HeLa cells. Biochem J. 2000 Dec 15;352(Pt 3):709–715. [PMC free article] [PubMed] [Google Scholar]
  21. Nalaskowski Marcus M., Bertsch Uwe, Fanick Werner, Stockebrand Malte C., Schmale Hartwig, Mayr Georg W. Rat inositol 1,4,5-trisphosphate 3-kinase C is enzymatically specialized for basal cellular inositol trisphosphate phosphorylation and shuttles actively between nucleus and cytoplasm. J Biol Chem. 2003 Mar 20;278(22):19765–19776. doi: 10.1074/jbc.M211059200. [DOI] [PubMed] [Google Scholar]
  22. Patel S., McLauchlin J., Casemore D. P. A simple SDS-PAGE immunoblotting technique using an enhanced chemiluminescence detection system to identify polyclonal antibody responses to complex cryptosporidial antigen preparations following a monoclonal antibody retest and image overlay technique. J Immunol Methods. 1997 Jul 14;205(2):157–161. doi: 10.1016/s0022-1759(97)00070-7. [DOI] [PubMed] [Google Scholar]
  23. Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986 Oct 17;234(4774):364–368. doi: 10.1126/science.2876518. [DOI] [PubMed] [Google Scholar]
  24. Schell M. J., Erneux C., Irvine R. F. Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus. J Biol Chem. 2001 Jul 23;276(40):37537–37546. doi: 10.1074/jbc.M104101200. [DOI] [PubMed] [Google Scholar]
  25. Skehel J. J., Wiley D. C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell. 1998 Dec 23;95(7):871–874. doi: 10.1016/s0092-8674(00)81710-9. [DOI] [PubMed] [Google Scholar]
  26. Soriano S., Thomas S., High S., Griffiths G., D'santos C., Cullen P., Banting G. Membrane association, localization and topology of rat inositol 1,4,5-trisphosphate 3-kinase B: implications for membrane traffic and Ca2+ homoeostasis. Biochem J. 1997 Jun 1;324(Pt 2):579–589. doi: 10.1042/bj3240579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takazawa K., Lemos M., Delvaux A., Lejeune C., Dumont J. E., Erneux C. Rat brain inositol 1,4,5-trisphosphate 3-kinase. Ca2(+)-sensitivity, purification and antibody production. Biochem J. 1990 May 15;268(1):213–217. doi: 10.1042/bj2680213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Takazawa K., Perret J., Dumont J. E., Erneux C. Molecular cloning and expression of a human brain inositol 1,4,5-trisphosphate 3-kinase. Biochem Biophys Res Commun. 1991 Jan 31;174(2):529–535. doi: 10.1016/0006-291x(91)91449-m. [DOI] [PubMed] [Google Scholar]
  29. Takazawa K., Perret J., Dumont J. E., Erneux C. Molecular cloning and expression of a new putative inositol 1,4,5-trisphosphate 3-kinase isoenzyme. Biochem J. 1991 Sep 15;278(Pt 3):883–886. doi: 10.1042/bj2780883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomas S., Brake B., Luzio J. P., Stanley K., Banting G. Isolation and sequence of a full length cDNA encoding a novel rat inositol 1,4,5-trisphosphate 3-kinase. Biochim Biophys Acta. 1994 Jan 13;1220(2):219–222. doi: 10.1016/0167-4889(94)90139-2. [DOI] [PubMed] [Google Scholar]
  31. Togashi S., Takazawa K., Endo T., Erneux C., Onaya T. Structural identification of the myo-inositol 1,4,5-trisphosphate-binding domain in rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1997 Aug 15;326(Pt 1):221–225. doi: 10.1042/bj3260221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vasu S. K., Forbes D. J. Nuclear pores and nuclear assembly. Curr Opin Cell Biol. 2001 Jun;13(3):363–375. doi: 10.1016/s0955-0674(00)00221-0. [DOI] [PubMed] [Google Scholar]
  33. Walker J., Watson J., Holmes C., Edelman A., Banting G. Production and characterisation of monoclonal and polyclonal antibodies to different regions of the cystic fibrosis transmembrane conductance regulator (CFTR): detection of immunologically related proteins. J Cell Sci. 1995 Jun;108(Pt 6):2433–2444. doi: 10.1242/jcs.108.6.2433. [DOI] [PubMed] [Google Scholar]
  34. Woodring P. J., Garrison J. C. Expression, purification, and regulation of two isoforms of the inositol 1,4,5-trisphosphate 3-kinase. J Biol Chem. 1997 Nov 28;272(48):30447–30454. doi: 10.1074/jbc.272.48.30447. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES