Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):673–680. doi: 10.1042/BJ20031052

Site-directed mutagenesis of the active site of diacylglycerol kinase alpha: calcium and phosphatidylserine stimulate enzyme activity via distinct mechanisms.

Takahiro Abe 1, Xiaolan Lu 1, Ying Jiang 1, Clark E Boccone 1, Shaomin Qian 1, Krishna M Vattem 1, Ronald C Wek 1, James P Walsh 1
PMCID: PMC1223725  PMID: 12908872

Abstract

Diacylglycerol kinases (DAGKs) catalyse ATP-dependent phosphorylation of sn-1,2-diacylglycerol that arises during stimulated phosphatidylinositol turnover. DAGKa is activated in vitro by Ca2+ and by acidic phospholipids. The regulatory region of DAGKa includes an N-terminal RVH motif and EF hands that mediate Ca2+-dependent activation. DAGKa also contains tandem C1 protein kinase C homology domains. We utilized yeast, Saccharomyces cerevisiae, which lacks an endogenous DAGK, to express DAGKa and to determine the enzymic activities of different mutant forms of pig DAGKa in vitro. Six aspartate residues conserved in all DAGKs were individually examined by site-directed mutagenesis. Five of these aspartate residues reside in conserved blocks that correspond to sequences in the catalytic site of phosphofructokinases. Mutation of D434 (Asp434) or D650 abolished all DAGKa activity, whereas substitution of one among D465, D497, D529 and D697 decreased the activity to 6% or less of that for wild-type DAGKa. Roles of homologous residues in phosphofructokinases suggested that the N-terminal half of the DAGK catalytic domain binds Mg-ATP and the C-terminal half binds diacylglycerol. A DAGKa mutant with its entire regulatory region deleted showed a much decreased activity that was not activated by Ca2+, but still exhibited PS (phosphatidylserine)-dependent activation. Moreover, mutations of aspartate residues at the catalytic domain had differential effects on activation by Ca2+ and PS. These results indicate that Ca2+ and PS stimulate DAGKa via distinct mechanisms.

Full Text

The Full Text of this article is available as a PDF (445.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auzat I., Byrnes W. M., Garel J. R., Chang S. H. Role of residue 161 in the allosteric transitions of two bacterial phosphofructokinases. Biochemistry. 1995 May 30;34(21):7062–7068. doi: 10.1021/bi00021a018. [DOI] [PubMed] [Google Scholar]
  3. Auzat I., Le Bras G., Garel J. R. Hypercooperativity induced by interface mutations in the phosphofructokinase from Escherichia coli. J Mol Biol. 1995 Feb 17;246(2):248–253. doi: 10.1006/jmbi.1994.0080. [DOI] [PubMed] [Google Scholar]
  4. Bailey T. L., Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36. [PubMed] [Google Scholar]
  5. Berger S. A., Evans P. R. Active-site mutants altering the cooperativity of E. coli phosphofructokinase. Nature. 1990 Feb 8;343(6258):575–576. doi: 10.1038/343575a0. [DOI] [PubMed] [Google Scholar]
  6. Berger S. A., Evans P. R. Site-directed mutagenesis identifies catalytic residues in the active site of Escherichia coli phosphofructokinase. Biochemistry. 1992 Sep 29;31(38):9237–9242. doi: 10.1021/bi00153a017. [DOI] [PubMed] [Google Scholar]
  7. Caloca M. J., Wang H., Delemos A., Wang S., Kazanietz M. G. Phorbol esters and related analogs regulate the subcellular localization of beta 2-chimaerin, a non-protein kinase C phorbol ester receptor. J Biol Chem. 2001 Feb 14;276(21):18303–18312. doi: 10.1074/jbc.M011368200. [DOI] [PubMed] [Google Scholar]
  8. Cho W. Membrane targeting by C1 and C2 domains. J Biol Chem. 2001 Jun 29;276(35):32407–32410. doi: 10.1074/jbc.R100007200. [DOI] [PubMed] [Google Scholar]
  9. Du X., Jiang Y., Qian W., Lu X., Walsh J. P. Fatty acids inhibit growth-factor-induced diacylglycerol kinase alpha activation in vascular smooth-muscle cells. Biochem J. 2001 Jul 1;357(Pt 1):275–282. doi: 10.1042/0264-6021:3570275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Erickson R. W., Langel-Peveri P., Traynor-Kaplan A. E., Heyworth P. G., Curnutte J. T. Activation of human neutrophil NADPH oxidase by phosphatidic acid or diacylglycerol in a cell-free system. Activity of diacylglycerol is dependent on its conversion to phosphatidic acid. J Biol Chem. 1999 Aug 6;274(32):22243–22250. doi: 10.1074/jbc.274.32.22243. [DOI] [PubMed] [Google Scholar]
  11. Fang Y., Vilella-Bach M., Bachmann R., Flanigan A., Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001 Nov 30;294(5548):1942–1945. doi: 10.1126/science.1066015. [DOI] [PubMed] [Google Scholar]
  12. Frank C., Keilhack H., Opitz F., Zschörnig O., Böhmer F. D. Binding of phosphatidic acid to the protein-tyrosine phosphatase SHP-1 as a basis for activity modulation. Biochemistry. 1999 Sep 14;38(37):11993–12002. doi: 10.1021/bi982586w. [DOI] [PubMed] [Google Scholar]
  13. Galinier Anne, Lavergne Jean-Pierre, Geourjon Christophe, Fieulaine Sonia, Nessler Sylvie, Jault Jean-Michel. A new family of phosphotransferases with a P-loop motif. J Biol Chem. 2002 Jan 16;277(13):11362–11367. doi: 10.1074/jbc.M109527200. [DOI] [PubMed] [Google Scholar]
  14. Grundy W. N., Bailey T. L., Elkan C. P., Baker M. E. Meta-MEME: motif-based hidden Markov models of protein families. Comput Appl Biosci. 1997 Aug;13(4):397–406. doi: 10.1093/bioinformatics/13.4.397. [DOI] [PubMed] [Google Scholar]
  15. Hellinga H. W., Evans P. R. Mutations in the active site of Escherichia coli phosphofructokinase. Nature. 1987 Jun 4;327(6121):437–439. doi: 10.1038/327437a0. [DOI] [PubMed] [Google Scholar]
  16. Henikoff S., Henikoff J. G., Alford W. J., Pietrokovski S. Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene. 1995 Oct 3;163(2):GC17–GC26. doi: 10.1016/0378-1119(95)00486-p. [DOI] [PubMed] [Google Scholar]
  17. Jiang Y., Qian W., Hawes J. W., Walsh J. P. A domain with homology to neuronal calcium sensors is required for calcium-dependent activation of diacylglycerol kinase alpha. J Biol Chem. 2000 Nov 3;275(44):34092–34099. doi: 10.1074/jbc.M004914200. [DOI] [PubMed] [Google Scholar]
  18. Jiang Y., Sakane F., Kanoh H., Walsh J. P. Selectivity of the diacylglycerol kinase inhibitor 3-[2-(4-[bis-(4-fluorophenyl)methylene]-1-piperidinyl)ethyl]-2, 3-dihydro-2-thioxo-4(1H)quinazolinone (R59949) among diacylglycerol kinase subtypes. Biochem Pharmacol. 2000 Apr 1;59(7):763–772. doi: 10.1016/s0006-2952(99)00395-0. [DOI] [PubMed] [Google Scholar]
  19. Johnson J. E., Giorgione J., Newton A. C. The C1 and C2 domains of protein kinase C are independent membrane targeting modules, with specificity for phosphatidylserine conferred by the C1 domain. Biochemistry. 2000 Sep 19;39(37):11360–11369. doi: 10.1021/bi000902c. [DOI] [PubMed] [Google Scholar]
  20. Jones David R., Sanjuán Miguel Angel, Stone James C., Mérida Isabel. Expression of a catalytically inactive form of diacylglycerol kinase alpha induces sustained signaling through RasGRP. FASEB J. 2002 Apr;16(6):595–597. doi: 10.1096/fj.01-0762fje. [DOI] [PubMed] [Google Scholar]
  21. Kanoh Hideo, Yamada Keiko, Sakane Fumio. Diacylglycerol kinases: emerging downstream regulators in cell signaling systems. J Biochem. 2002 May;131(5):629–633. doi: 10.1093/oxfordjournals.jbchem.a003144. [DOI] [PubMed] [Google Scholar]
  22. Kimmel J. L., Reinhart G. D. Isolation of an individual allosteric interaction in tetrameric phosphofructokinase from Bacillus stearothermophilus. Biochemistry. 2001 Sep 25;40(38):11623–11629. doi: 10.1021/bi010844a. [DOI] [PubMed] [Google Scholar]
  23. Labesse Gilles, Douguet Dominique, Assairi Liliane, Gilles Anne Marie. Diacylglyceride kinases, sphingosine kinases and NAD kinases: distant relatives of 6-phosphofructokinases. Trends Biochem Sci. 2002 Jun;27(6):273–275. doi: 10.1016/s0968-0004(02)02093-5. [DOI] [PubMed] [Google Scholar]
  24. Lackner M. R., Nurrish S. J., Kaplan J. M. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron. 1999 Oct;24(2):335–346. doi: 10.1016/s0896-6273(00)80848-x. [DOI] [PubMed] [Google Scholar]
  25. Lightner V. A., Bell R. M., Modrich P. The DNA sequences encoding plsB and dgk loci of Escherichia coli. J Biol Chem. 1983 Sep 25;258(18):10856–10861. [PubMed] [Google Scholar]
  26. Maroney A. C., Macara I. G. Phorbol ester-induced translocation of diacylglycerol kinase from the cytosol to the membrane in Swiss 3T3 fibroblasts. J Biol Chem. 1989 Feb 15;264(5):2537–2544. [PubMed] [Google Scholar]
  27. Moore Stanley A., Ronimus Ron S., Roberson Russel S., Morgan Hugh W. The structure of a pyrophosphate-dependent phosphofructokinase from the Lyme disease spirochete Borrelia burgdorferi. Structure. 2002 May;10(5):659–671. doi: 10.1016/s0969-2126(02)00760-8. [DOI] [PubMed] [Google Scholar]
  28. Nagiec M. M., Skrzypek M., Nagiec E. E., Lester R. L., Dickson R. C. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem. 1998 Jul 31;273(31):19437–19442. doi: 10.1074/jbc.273.31.19437. [DOI] [PubMed] [Google Scholar]
  29. Olivera A., Kohama T., Tu Z., Milstien S., Spiegel S. Purification and characterization of rat kidney sphingosine kinase. J Biol Chem. 1998 May 15;273(20):12576–12583. doi: 10.1074/jbc.273.20.12576. [DOI] [PubMed] [Google Scholar]
  30. Petersohn A., Antelmann H., Gerth U., Hecker M. Identification and transcriptional analysis of new members of the sigmaB regulon in Bacillus subtilis. Microbiology. 1999 Apr;145(Pt 4):869–880. doi: 10.1099/13500872-145-4-869. [DOI] [PubMed] [Google Scholar]
  31. Priefert H., Hein S., Krüger N., Zeh K., Schmidt B., Steinbüchel A. Identification and molecular characterization of the Alcaligenes eutrophus H16 aco operon genes involved in acetoin catabolism. J Bacteriol. 1991 Jul;173(13):4056–4071. doi: 10.1128/jb.173.13.4056-4071.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Raetz C. R., Newman K. F. Neutral lipid accumulation in the membranes of Escherichia coli mutants lacking diglyceride kinase. J Biol Chem. 1978 Jun 10;253(11):3882–3887. [PubMed] [Google Scholar]
  33. Rao V. D., Misra S., Boronenkov I. V., Anderson R. A., Hurley J. H. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell. 1998 Sep 18;94(6):829–839. doi: 10.1016/s0092-8674(00)81741-9. [DOI] [PubMed] [Google Scholar]
  34. Sakane F., Imai S., Kai M., Wada I., Kanoh H. Molecular cloning of a novel diacylglycerol kinase isozyme with a pleckstrin homology domain and a C-terminal tail similar to those of the EPH family of protein-tyrosine kinases. J Biol Chem. 1996 Apr 5;271(14):8394–8401. doi: 10.1074/jbc.271.14.8394. [DOI] [PubMed] [Google Scholar]
  35. Sakane F., Kai M., Wada I., Imai S., Kanoh H. The C-terminal part of diacylglycerol kinase alpha lacking zinc fingers serves as a catalytic domain. Biochem J. 1996 Sep 1;318(Pt 2):583–590. doi: 10.1042/bj3180583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schirmer T., Evans P. R. Structural basis of the allosteric behaviour of phosphofructokinase. Nature. 1990 Jan 11;343(6254):140–145. doi: 10.1038/343140a0. [DOI] [PubMed] [Google Scholar]
  37. Shindo M., Irie K., Ohigashi H., Kuriyama M., Saito N. Diacylglycerol kinase gamma is one of the specific receptors of tumor-promoting phorbol esters. Biochem Biophys Res Commun. 2001 Nov 30;289(2):451–456. doi: 10.1006/bbrc.2001.5935. [DOI] [PubMed] [Google Scholar]
  38. Shindo Mayumi, Irie Kazuhiro, Masuda Akiko, Ohigashi Hajime, Shirai Yasuhito, Miyasaka Kei, Saito Naoaki. Synthesis and phorbol ester binding of the cysteine-rich domains of diacylglycerol kinase (DGK) isozymes. DGKgamma and DGKbeta are new targets of tumor-promoting phorbol esters. J Biol Chem. 2003 Mar 5;278(20):18448–18454. doi: 10.1074/jbc.M300400200. [DOI] [PubMed] [Google Scholar]
  39. Shirai Y., Segawa S., Kuriyama M., Goto K., Sakai N., Saito N. Subtype-specific translocation of diacylglycerol kinase alpha and gamma and its correlation with protein kinase C. J Biol Chem. 2000 Aug 11;275(32):24760–24766. doi: 10.1074/jbc.M003151200. [DOI] [PubMed] [Google Scholar]
  40. Shirakihara Y., Evans P. R. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol. 1988 Dec 20;204(4):973–994. doi: 10.1016/0022-2836(88)90056-3. [DOI] [PubMed] [Google Scholar]
  41. Snedden W. A., Blumwald E. Alternative splicing of a novel diacylglycerol kinase in tomato leads to a calmodulin-binding isoform. Plant J. 2000 Nov;24(3):317–326. doi: 10.1046/j.1365-313x.2000.00877.x. [DOI] [PubMed] [Google Scholar]
  42. Tesfai Y., Brereton H. M., Barritt G. J. A diacylglycerol-activated Ca2+ channel in PC12 cells (an adrenal chromaffin cell line) correlates with expression of the TRP-6 (transient receptor potential) protein. Biochem J. 2001 Sep 15;358(Pt 3):717–726. doi: 10.1042/0264-6021:3580717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thomas W. E., Glomset J. A. Multiple factors influence the binding of a soluble, Ca2+-independent, diacylglycerol kinase to unilamellar phosphoglyceride vesicles. Biochemistry. 1999 Mar 16;38(11):3310–3319. doi: 10.1021/bi982566u. [DOI] [PubMed] [Google Scholar]
  44. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Valdez B. C., French B. A., Younathan E. S., Chang S. H. Site-directed mutagenesis in Bacillus stearothermophilus fructose-6-phosphate 1-kinase. Mutation at the substrate-binding site affects allosteric behavior. J Biol Chem. 1989 Jan 5;264(1):131–135. [PubMed] [Google Scholar]
  46. Walsh J. P., Bell R. M. Diacylglycerol kinase from Escherichia coli. Methods Enzymol. 1992;209:153–162. doi: 10.1016/0076-6879(92)09019-y. [DOI] [PubMed] [Google Scholar]
  47. Walsh J. P., Suen R., Lemaitre R. N., Glomset J. A. Arachidonoyl-diacylglycerol kinase from bovine testis. Purification and properties. J Biol Chem. 1994 Aug 19;269(33):21155–21164. [PubMed] [Google Scholar]
  48. Yamada K., Kanoh H. Occurrence of immunoreactive 80 kDa and non-immunoreactive diacylglycerol kinases in different pig tissues. Biochem J. 1988 Oct 15;255(2):601–608. [PMC free article] [PubMed] [Google Scholar]
  49. Zhong Xiao-Ping, Hainey Ehmonie A., Olenchock Benjamin A., Zhao Haoran, Topham Matthew K., Koretzky Gary A. Regulation of T cell receptor-induced activation of the Ras-ERK pathway by diacylglycerol kinase zeta. J Biol Chem. 2002 Jun 17;277(34):31089–31098. doi: 10.1074/jbc.M203818200. [DOI] [PubMed] [Google Scholar]
  50. van Blitterswijk W. J., Houssa B. Properties and functions of diacylglycerol kinases. Cell Signal. 2000 Oct;12(9-10):595–605. doi: 10.1016/s0898-6568(00)00113-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES