Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):551–560. doi: 10.1042/BJ20030688

Characterization of Amm VIII from Androctonus mauretanicus mauretanicus: a new scorpion toxin that discriminates between neuronal and skeletal sodium channels.

Meriem Alami 1, Hélène Vacher 1, Frank Bosmans 1, Christiane Devaux 1, Jean-Pierre Rosso 1, Pierre E Bougis 1, Jan Tytgat 1, Hervé Darbon 1, Marie-France Martin-Eauclaire 1
PMCID: PMC1223727  PMID: 12911331

Abstract

The venom of the scorpion Androctonus mauretanicus mauretanicus was screened by use of a specific serum directed against AaH II, the scorpion alpha-toxin of reference, with the aim of identifying new analogues. This led to the isolation of Amm VIII (7382.57 Da), which gave a highly positive response in ELISA, but was totally devoid of toxicity when injected subcutaneously into mice. In voltage-clamp experiments with rat brain type II Na+ channel rNa(v)1.2 or rat skeletal muscle Na+ channel rNa(v)1.4, expressed in Xenopus oocytes, the EC50 values of the toxin-induced slowing of inactivation were: 29+/-5 and 416+/-14 nM respectively for AmmVIII and 2.6+/-0.3 nM and 2.2+/-0.2 nM, respectively, for AaH II interactions. Accordingly, Amm VIII clearly discriminates neuronal versus muscular Na+ channel. The Amm VIII cDNA was amplified from a venom gland cDNA library and its oligonucleotide sequence determined. It shows 87% sequence homology with AaH II, but carries an unusual extension at its C-terminal end, consisting of an additional Asp due to a point mutation in the cDNA penultimate codon. We hypothesized that this extra amino acid residue could induce steric hindrance and dramatically reduce recognition of the target by Amm VIII. We constructed a model of Amm VIII based on the X-ray structure of AaH II to clarify this point. Molecular modelling showed that this C-terminal extension does not lead to an overall conformational change in Amm VIII, but drastically modifies the charge repartition and, consequently, the electrostatic dipole moment of the molecule. At last, liquid-phase radioimmunassays with poly- and monoclonal anti-(AaH II) antibodies showed the loss of conformational epitopes between AaH II and Amm VIII.

Full Text

The Full Text of this article is available as a PDF (347.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alami M., Ouafik L., Céard B., Legros C., Bougis P. E., Martin-Eauclaire M. F. Characterisation of the gene encoding the alpha-toxin Amm V from the scorpion Androctonus mauretanicus mauretanicus. Toxicon. 2001 Oct;39(10):1579–1585. doi: 10.1016/s0041-0101(01)00140-4. [DOI] [PubMed] [Google Scholar]
  2. Bahraoui E., Pichon J., Muller J. M., Darbon H., Elayeb M., Granier C., Marvaldi J., Rochat H. Monoclonal antibodies to scorpion toxins. Characterization and molecular mechanisms of neutralization. J Immunol. 1988 Jul 1;141(1):214–220. [PubMed] [Google Scholar]
  3. Bahraoui E., el Ayeb M., Van Rietschoten J., Rochat H., Granier C. Immunochemistry of scorpion alpha-toxins: study with synthetic peptides of the antigenicity of four regions of toxin II of Androctonus australis Hector. Mol Immunol. 1986 Apr;23(4):357–366. doi: 10.1016/0161-5890(86)90133-1. [DOI] [PubMed] [Google Scholar]
  4. Benzinger G. R., Kyle J. W., Blumenthal K. M., Hanck D. A. A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J Biol Chem. 1998 Jan 2;273(1):80–84. doi: 10.1074/jbc.273.1.80. [DOI] [PubMed] [Google Scholar]
  5. Bougis P. E., Rochat H., Smith L. A. Precursors of Androctonus australis scorpion neurotoxins. Structures of precursors, processing outcomes, and expression of a functional recombinant toxin II. J Biol Chem. 1989 Nov 15;264(32):19259–19265. [PubMed] [Google Scholar]
  6. Catterall W. A. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev. 1992 Oct;72(4 Suppl):S15–S48. doi: 10.1152/physrev.1992.72.suppl_4.S15. [DOI] [PubMed] [Google Scholar]
  7. Cestèle S., Catterall W. A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 2000 Sep-Oct;82(9-10):883–892. doi: 10.1016/s0300-9084(00)01174-3. [DOI] [PubMed] [Google Scholar]
  8. Cestèle S., Stankiewicz M., Mansuelle P., De Waard M., Dargent B., Gilles N., Pelhate M., Rochat H., Martin-Eauclaire M. F., Gordon D. Scorpion alpha-like toxins, toxic to both mammals and insects, differentially interact with receptor site 3 on voltage-gated sodium channels in mammals and insects. Eur J Neurosci. 1999 Mar;11(3):975–985. doi: 10.1046/j.1460-9568.1999.00505.x. [DOI] [PubMed] [Google Scholar]
  9. Chen Haijun, Lu SongQing, Leipold Enrico, Gordon Dalia, Hansel Alfred, Heinemann Stefan H. Differential sensitivity of sodium channels from the central and peripheral nervous system to the scorpion toxins Lqh-2 and Lqh-3. Eur J Neurosci. 2002 Aug;16(4):767–770. doi: 10.1046/j.1460-9568.2002.02142.x. [DOI] [PubMed] [Google Scholar]
  10. Crest M., Jacquet G., Gola M., Zerrouk H., Benslimane A., Rochat H., Mansuelle P., Martin-Eauclaire M. F. Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca(2+)-activated K+ channels characterized from Androctonus mauretanicus mauretanicus venom. J Biol Chem. 1992 Jan 25;267(3):1640–1647. [PubMed] [Google Scholar]
  11. Darbon H., Jover E., Couraud F., Rochat H. Alpha-scorpion neurotoxin derivatives suitable as potential markers of sodium channels. Preparation and characterization. Int J Pept Protein Res. 1983 Aug;22(2):179–186. doi: 10.1111/j.1399-3011.1983.tb02084.x. [DOI] [PubMed] [Google Scholar]
  12. Devaux C., Clot-Faybesse O., Juin M., Mabrouk K., Sabatier J. M., Rochat H. Monoclonal antibodies neutralizing the toxin II from Androctonus australis hector scorpion venom: usefulness of a synthetic, non-toxic analog. FEBS Lett. 1997 Aug 4;412(3):456–460. doi: 10.1016/s0014-5793(97)00826-0. [DOI] [PubMed] [Google Scholar]
  13. El Ayeb M., Delori P., Rochat H. Immunochemistry of scorpion alpha-toxins: antigenic homologies checked with radioimmunoassays (RIA). Toxicon. 1983;21(5):709–716. doi: 10.1016/0041-0101(83)90276-3. [DOI] [PubMed] [Google Scholar]
  14. Ferrat G., Bernard C., Fremont V., Mullmann T. J., Giangiacomo K. M., Darbon H. Structural basis for alpha-K toxin specificity for K+ channels revealed through the solution 1H NMR structures of two noxiustoxin-iberiotoxin chimeras. Biochemistry. 2001 Sep 18;40(37):10998–11006. doi: 10.1021/bi010228e. [DOI] [PubMed] [Google Scholar]
  15. Fontecilla-Camps J. C., Habersetzer-Rochat C., Rochat H. Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7443–7447. doi: 10.1073/pnas.85.20.7443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Froy O., Zilberberg N., Gordon D., Turkov M., Gilles N., Stankiewicz M., Pelhate M., Loret E., Oren D. A., Shaanan B. The putative bioactive surface of insect-selective scorpion excitatory neurotoxins. J Biol Chem. 1999 Feb 26;274(9):5769–5776. doi: 10.1074/jbc.274.9.5769. [DOI] [PubMed] [Google Scholar]
  17. Gellens M. E., George A. L., Jr, Chen L. Q., Chahine M., Horn R., Barchi R. L., Kallen R. G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):554–558. doi: 10.1073/pnas.89.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gilles N., Chen H., Wilson H., Le Gall F., Montoya G., Molgo J., Schönherr R., Nicholson G., Heinemann S. H., Gordon D. Scorpion alpha and alpha-like toxins differentially interact with sodium channels in mammalian CNS and periphery. Eur J Neurosci. 2000 Aug;12(8):2823–2832. doi: 10.1046/j.1460-9568.2000.00168.x. [DOI] [PubMed] [Google Scholar]
  19. Gordon D., Martin-Eauclaire M. F., Cestèle S., Kopeyan C., Carlier E., Khalifa R. B., Pelhate M., Rochat H. Scorpion toxins affecting sodium current inactivation bind to distinct homologous receptor sites on rat brain and insect sodium channels. J Biol Chem. 1996 Apr 5;271(14):8034–8045. doi: 10.1074/jbc.271.14.8034. [DOI] [PubMed] [Google Scholar]
  20. Granier C., Novotny J., Fontecilla-Camps J. C., Fourquet P., el Ayeb M., Bahraoui E. The antigenic structure of a scorpion toxin. Mol Immunol. 1989 Jun;26(6):503–513. doi: 10.1016/0161-5890(89)90001-1. [DOI] [PubMed] [Google Scholar]
  21. Hamon Alain, Gilles Nicolas, Sautière Pierre, Martinage Arlette, Kopeyan Charles, Ulens Chris, Tytgat Jan, Lancelin Jean-Marc, Gordon Dalia. Characterization of scorpion alpha-like toxin group using two new toxins from the scorpion Leiurus quinquestriatus hebraeus. Eur J Biochem. 2002 Aug;269(16):3920–3933. doi: 10.1046/j.1432-1033.2002.03065.x. [DOI] [PubMed] [Google Scholar]
  22. Hassani O., Loew D., Van Dorsselaer A., Papandréou M. J., Sorokine O., Rochat H., Sampieri F., Mansuelle P. Aah VI, a novel, N-glycosylated anti-insect toxin from Androctonus australis hector scorpion venom: isolation, characterisation, and glycan structure determination. FEBS Lett. 1999 Jan 25;443(2):175–180. doi: 10.1016/s0014-5793(98)01710-4. [DOI] [PubMed] [Google Scholar]
  23. Kharrat R., Darbon H., Rochat H., Granier C. Structure/activity relationships of scorpion alpha-toxins. Multiple residues contribute to the interaction with receptors. Eur J Biochem. 1989 May 1;181(2):381–390. doi: 10.1111/j.1432-1033.1989.tb14735.x. [DOI] [PubMed] [Google Scholar]
  24. Liman E. R., Tytgat J., Hess P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron. 1992 Nov;9(5):861–871. doi: 10.1016/0896-6273(92)90239-a. [DOI] [PubMed] [Google Scholar]
  25. Martin M. F., Rochat H. Large scale purification of toxins from the venom of the scorpion Androctonus australis Hector. Toxicon. 1986;24(11-12):1131–1139. doi: 10.1016/0041-0101(86)90139-x. [DOI] [PubMed] [Google Scholar]
  26. Noda M., Ikeda T., Kayano T., Suzuki H., Takeshima H., Kurasaki M., Takahashi H., Numa S. Existence of distinct sodium channel messenger RNAs in rat brain. Nature. 1986 Mar 13;320(6058):188–192. doi: 10.1038/320188a0. [DOI] [PubMed] [Google Scholar]
  27. Pimenta A. M., Stöcklin R., Favreau P., Bougis P. E., Martin-Eauclaire M. F. Moving pieces in a proteomic puzzle: mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). Rapid Commun Mass Spectrom. 2001;15(17):1562–1572. doi: 10.1002/rcm.415. [DOI] [PubMed] [Google Scholar]
  28. Pinheiro Carlos Basílio, Marangoni Sérgio, Toyama Marcos H., Polikarpov Igor. Structural analysis of Tityus serrulatus Ts1 neurotoxin at atomic resolution: insights into interactions with Na+ channels. Acta Crystallogr D Biol Crystallogr. 2003 Feb 21;59(Pt 3):405–415. doi: 10.1107/s090744490202111x. [DOI] [PubMed] [Google Scholar]
  29. Rogers J. C., Qu Y., Tanada T. N., Scheuer T., Catterall W. A. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J Biol Chem. 1996 Jul 5;271(27):15950–15962. doi: 10.1074/jbc.271.27.15950. [DOI] [PubMed] [Google Scholar]
  30. Romi-Lebrun R., Lebrun B., Martin-Eauclaire M. F., Ishiguro M., Escoubas P., Wu F. Q., Hisada M., Pongs O., Nakajima T. Purification, characterization, and synthesis of three novel toxins from the Chinese scorpion Buthus martensi, which act on K+ channels. Biochemistry. 1997 Nov 4;36(44):13473–13482. doi: 10.1021/bi971044w. [DOI] [PubMed] [Google Scholar]
  31. Rosso J. P., Rochat H. Characterization of ten proteins from the venom of the Moroccan scorpion Androctonus mauretanicus mauretanicus, six of which are toxic to the mouse. Toxicon. 1985;23(1):113–125. doi: 10.1016/0041-0101(85)90114-x. [DOI] [PubMed] [Google Scholar]
  32. Srairi-Abid N., Mansuelle P., Mejri T., Karoui H., Rochat H., Sampieri F., El Ayeb M. Purification, characterization and molecular modelling of two toxin-like proteins from the Androctonus australis Hector venom. Eur J Biochem. 2000 Sep;267(17):5614–5620. doi: 10.1046/j.1432-1327.2000.01632.x. [DOI] [PubMed] [Google Scholar]
  33. Thomsen W. J., Catterall W. A. Localization of the receptor site for alpha-scorpion toxins by antibody mapping: implications for sodium channel topology. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10161–10165. doi: 10.1073/pnas.86.24.10161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Trimmer J. S., Cooperman S. S., Tomiko S. A., Zhou J. Y., Crean S. M., Boyle M. B., Kallen R. G., Sheng Z. H., Barchi R. L., Sigworth F. J. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron. 1989 Jul;3(1):33–49. doi: 10.1016/0896-6273(89)90113-x. [DOI] [PubMed] [Google Scholar]
  35. Zerrouk H., Bougis P. E., Céard B., Benslimane A., Martin-Eauclaire M. F. Analysis by high-performance liquid chromatography of Androctonus mauretanicus mauretanicus (black scorpion) venom. Toxicon. 1991;29(8):951–960. doi: 10.1016/0041-0101(91)90078-6. [DOI] [PubMed] [Google Scholar]
  36. Zilberberg N., Froy O., Loret E., Cestele S., Arad D., Gordon D., Gurevitz M. Identification of structural elements of a scorpion alpha-neurotoxin important for receptor site recognition. J Biol Chem. 1997 Jun 6;272(23):14810–14816. doi: 10.1074/jbc.272.23.14810. [DOI] [PubMed] [Google Scholar]
  37. Zilberberg N., Gordon D., Pelhate M., Adams M. E., Norris T. M., Zlotkin E., Gurevitz M. Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry. 1996 Aug 6;35(31):10215–10222. doi: 10.1021/bi9528309. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES