Abstract
N-glycosylation is a post-translational modification that plays a role in the trafficking and/or function of some membrane proteins. We have shown previously that N-glycosylation affected the function of some Kv1 voltage-gated potassium (K+) channels [Watanabe, Wang, Sutachan, Zhu, Recio-Pinto and Thornhill (2003) J. Physiol. (Cambridge, U.K.) 550, 51-66]. Kv1 channel S1-S2 linkers vary in length but their N-glycosylation sites are at similar relative positions from the S1 or S2 membrane domains. In the present study, by a scanning mutagenesis approach, we determined the allowed N-glycosylation sites on the Kv1.2 S1-S2 linker, which has 39 amino acids, by engineering N-glycosylation sites and assaying for glycosylation, using their sensitivity to glycosidases. The middle section of the linker (54% of linker) was glycosylated at every position, whereas both end sections (46% of linker) near the S1 or S2 membrane domains were not. These findings suggested that the middle section of the S1-S2 linker was accessible to the endoplasmic reticulum glycotransferase at every position and was in the extracellular aqueous phase, and presumably in a flexible conformation. We speculate that the S1-S2 linker is mostly a coiled-loop structure and that the strict relative position of native glycosylation sites on these linkers may be involved in the mechanism underlying the functional effects of glycosylation on some Kv1 K+ channels. The S3-S4 linker, with 16 amino acids and no N-glycosylation site, was not glycosylated when an N-glycosylation site was added. However, an extended linker, with an added N-linked site, was glycosylated, which suggested that the native linker was not glycosylated due to its short length. Thus other ion channels or membrane proteins may also have a high glycosylation potential on a linker but yet have similarly positioned native N-glycosylation sites among isoforms. This may imply that the native position of the N-glycosylation site may be important if the carbohydrate tree plays a role in the folding, stability, trafficking and/or function of the protein.
Full Text
The Full Text of this article is available as a PDF (237.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bekele-Arcuri Z., Matos M. F., Manganas L., Strassle B. W., Monaghan M. M., Rhodes K. J., Trimmer J. S. Generation and characterization of subtype-specific monoclonal antibodies to K+ channel alpha- and beta-subunit polypeptides. Neuropharmacology. 1996;35(7):851–865. doi: 10.1016/0028-3908(96)00128-1. [DOI] [PubMed] [Google Scholar]
- Coetzee W. A., Amarillo Y., Chiu J., Chow A., Lau D., McCormack T., Moreno H., Nadal M. S., Ozaita A., Pountney D. Molecular diversity of K+ channels. Ann N Y Acad Sci. 1999 Apr 30;868:233–285. doi: 10.1111/j.1749-6632.1999.tb11293.x. [DOI] [PubMed] [Google Scholar]
- Cuff J. A., Barton G. J. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins. 2000 Aug 15;40(3):502–511. doi: 10.1002/1097-0134(20000815)40:3<502::aid-prot170>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
- Dolly J. O., Parcej D. N. Molecular properties of voltage-gated K+ channels. J Bioenerg Biomembr. 1996 Jun;28(3):231–253. doi: 10.1007/BF02110698. [DOI] [PubMed] [Google Scholar]
- Durell S. R., Hao Y., Guy H. R. Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations. J Struct Biol. 1998;121(2):263–284. doi: 10.1006/jsbi.1998.3962. [DOI] [PubMed] [Google Scholar]
- Hong K. H., Miller C. The lipid-protein interface of a Shaker K(+) channel. J Gen Physiol. 2000 Jan;115(1):51–58. doi: 10.1085/jgp.115.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jan L. Y., Jan Y. N. Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci. 1997;20:91–123. doi: 10.1146/annurev.neuro.20.1.91. [DOI] [PubMed] [Google Scholar]
- Jiang Youxing, Lee Alice, Chen Jiayun, Ruta Vanessa, Cadene Martine, Chait Brian T., MacKinnon Roderick. X-ray structure of a voltage-dependent K+ channel. Nature. 2003 May 1;423(6935):33–41. doi: 10.1038/nature01580. [DOI] [PubMed] [Google Scholar]
- Jones D. T. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999 Sep 17;292(2):195–202. doi: 10.1006/jmbi.1999.3091. [DOI] [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
- Landolt-Marticorena C., Reithmeier R. A. Asparagine-linked oligosaccharides are localized to single extracytosolic segments in multi-span membrane glycoproteins. Biochem J. 1994 Aug 15;302(Pt 1):253–260. doi: 10.1042/bj3020253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li-Smerin Y., Hackos D. H., Swartz K. J. alpha-helical structural elements within the voltage-sensing domains of a K(+) channel. J Gen Physiol. 2000 Jan;115(1):33–50. doi: 10.1085/jgp.115.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGuffin L. J., Bryson K., Jones D. T. The PSIPRED protein structure prediction server. Bioinformatics. 2000 Apr;16(4):404–405. doi: 10.1093/bioinformatics/16.4.404. [DOI] [PubMed] [Google Scholar]
- Monks S. A., Needleman D. J., Miller C. Helical structure and packing orientation of the S2 segment in the Shaker K+ channel. J Gen Physiol. 1999 Mar;113(3):415–423. doi: 10.1085/jgp.113.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ouali M., King R. D. Cascaded multiple classifiers for secondary structure prediction. Protein Sci. 2000 Jun;9(6):1162–1176. doi: 10.1110/ps.9.6.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollastri Gianluca, Przybylski Darisz, Rost Burkhard, Baldi Pierre. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins. 2002 May 1;47(2):228–235. doi: 10.1002/prot.10082. [DOI] [PubMed] [Google Scholar]
- Rehm H. Enzymatic deglycosylation of the dendrotoxin-binding protein. FEBS Lett. 1989 Apr 10;247(1):28–30. doi: 10.1016/0014-5793(89)81233-5. [DOI] [PubMed] [Google Scholar]
- Rhodes K. J., Strassle B. W., Monaghan M. M., Bekele-Arcuri Z., Matos M. F., Trimmer J. S. Association and colocalization of the Kvbeta1 and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes. J Neurosci. 1997 Nov 1;17(21):8246–8258. doi: 10.1523/JNEUROSCI.17-21-08246.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 1996;266:525–539. doi: 10.1016/s0076-6879(96)66033-9. [DOI] [PubMed] [Google Scholar]
- Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
- Scott V. E., Muniz Z. M., Sewing S., Lichtinghagen R., Parcej D. N., Pongs O., Dolly J. O. Antibodies specific for distinct Kv subunits unveil a heterooligomeric basis for subtypes of alpha-dendrotoxin-sensitive K+ channels in bovine brain. Biochemistry. 1994 Feb 22;33(7):1617–1623. doi: 10.1021/bi00173a001. [DOI] [PubMed] [Google Scholar]
- Shi G., Trimmer J. S. Differential asparagine-linked glycosylation of voltage-gated K+ channels in mammalian brain and in transfected cells. J Membr Biol. 1999 Apr 1;168(3):265–273. doi: 10.1007/s002329900515. [DOI] [PubMed] [Google Scholar]
- Stühmer W., Ruppersberg J. P., Schröter K. H., Sakmann B., Stocker M., Giese K. P., Perschke A., Baumann A., Pongs O. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 1989 Nov;8(11):3235–3244. doi: 10.1002/j.1460-2075.1989.tb08483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornhill W. B., Wu M. B., Jiang X., Wu X., Morgan P. T., Margiotta J. F. Expression of Kv1.1 delayed rectifier potassium channels in Lec mutant Chinese hamster ovary cell lines reveals a role for sialidation in channel function. J Biol Chem. 1996 Aug 9;271(32):19093–19098. doi: 10.1074/jbc.271.32.19093. [DOI] [PubMed] [Google Scholar]
- Trimmer J. S. Regulation of ion channel expression by cytoplasmic subunits. Curr Opin Neurobiol. 1998 Jun;8(3):370–374. doi: 10.1016/s0959-4388(98)80063-9. [DOI] [PubMed] [Google Scholar]
- Wang H., Kunkel D. D., Martin T. M., Schwartzkroin P. A., Tempel B. L. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature. 1993 Sep 2;365(6441):75–79. doi: 10.1038/365075a0. [DOI] [PubMed] [Google Scholar]
- Watanabe Itaru, Wang Hong-Gang, Sutachan Jhon J., Zhu Jing, Recio-Pinto Esperanza, Thornhill William B. Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism. J Physiol. 2003 Jul 1;550(Pt 1):51–66. doi: 10.1113/jphysiol.2003.040337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu J., Watanabe I., Gomez B., Thornhill W. B. Determinants involved in Kv1 potassium channel folding in the endoplasmic reticulum, glycosylation in the Golgi, and cell surface expression. J Biol Chem. 2001 Aug 3;276(42):39419–39427. doi: 10.1074/jbc.M107399200. [DOI] [PubMed] [Google Scholar]