Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):561–565. doi: 10.1042/BJ20030613

Lyso-glycosphingolipids mobilize calcium from brain microsomes via multiple mechanisms.

Emyr Lloyd-Evans 1, Dori Pelled 1, Christian Riebeling 1, Anthony H Futerman 1
PMCID: PMC1223730  PMID: 12917012

Abstract

Recently, we demonstrated that the GSL (glycosphingolipid), GlcCer (glucosylceramide), modulates Ca2+ release from intracellular stores and from microsomes by sensitizing the RyaR (ryanodine receptor), a major Ca2+-release channel of the endoplasmic reticulum, whereas the lyso derivative of GlcCer, namely GlcSph (glucosylsphingosine), induced Ca2+ release via a mechanism independent of the RyaR [Lloyd-Evans, Pelled, Riebeling, Bodennec, de-Morgan, Waller, Schiffmann and Futerman (2003) J. Biol. Chem. 278, 23594-23599]. We now systematically examine the mechanism by which GlcSph and other lyso-GSLs modulate Ca2+ mobilization from rat brain cortical and cerebellar microsomes. GlcSph, lactosylsphingosine and galactosylsphingosine all mobilized Ca2+, but at significantly higher concentrations than those required for GlcCer-mediated sensitization of the RyaR. GlcSph-induced Ca2+ mobilization was partially blocked by heparin, an inhibitor of the Ins(1,4,5) P3 receptor, and also partially blocked by thapsigargin or ADP, inhibitors of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase), but completely blocked when both acted together. In contrast, neither lactosylsphingosine nor galactosylsphingosine had any effect on Ca2+ release via either the Ins(1,4,5) P3 receptor or SERCA, but acted as agonists of the RyaR. Finally, and surprisingly, all three lyso-GSLs reversed inhibition of SERCA by thapsigargin. We conclude that different lyso-GSLs modulate Ca2+ mobilization via different mechanisms, and discuss the relevance of these findings to the GSL storage diseases in which lyso-GSLs accumulate.

Full Text

The Full Text of this article is available as a PDF (135.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariga T., Jarvis W. D., Yu R. K. Role of sphingolipid-mediated cell death in neurodegenerative diseases. J Lipid Res. 1998 Jan;39(1):1–16. [PubMed] [Google Scholar]
  2. Berman M. C. Characterisation of thapsigargin-releasable Ca(2+) from the Ca(2+)-ATPase of sarcoplasmic reticulum at limiting [Ca(2+)]. Biochim Biophys Acta. 2000 Dec 20;1509(1-2):42–54. doi: 10.1016/s0005-2736(00)00280-7. [DOI] [PubMed] [Google Scholar]
  3. Betto R., Teresi A., Turcato F., Salviati G., Sabbadini R. A., Krown K., Glembotski C. C., Kindman L. A., Dettbarn C., Pereon Y. Sphingosylphosphocholine modulates the ryanodine receptor/calcium-release channel of cardiac sarcoplasmic reticulum membranes. Biochem J. 1997 Feb 15;322(Pt 1):327–333. doi: 10.1042/bj3220327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bodennec Jacques, Pelled Dori, Riebeling Christian, Trajkovic Selena, Futerman Anthony H. Phosphatidylcholine synthesis is elevated in neuronal models of Gaucher disease due to direct activation of CTP:phosphocholine cytidylyltransferase by glucosylceramide. FASEB J. 2002 Sep 5;16(13):1814–1816. doi: 10.1096/fj.02-0149fje. [DOI] [PubMed] [Google Scholar]
  5. Bodennec Jacques, Trajkovic-Bodennec Selena, Futerman Anthony H. Simultaneous quantification of lyso-neutral glycosphingolipids and neutral glycosphingolipids by N-acetylation with [3H]acetic anhydride. J Lipid Res. 2003 May 1;44(7):1413–1419. doi: 10.1194/jlr.D300010-JLR200. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Buccoliero Rosaria, Bodennec Jacques, Futerman Anthony H. The role of sphingolipids in neuronal development: lessons from models of sphingolipid storage diseases. Neurochem Res. 2002 Aug;27(7-8):565–574. doi: 10.1023/a:1020207613196. [DOI] [PubMed] [Google Scholar]
  8. Dettbarn C., Betto R., Salviati G., Sabbadini R., Palade P. Involvement of ryanodine receptors in sphingosylphosphorylcholine-induced calcium release from brain microsomes. Brain Res. 1995 Jan 9;669(1):79–85. doi: 10.1016/0006-8993(94)01234-9. [DOI] [PubMed] [Google Scholar]
  9. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  10. Ghosh T. K., Bian J., Gill D. L. Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J Biol Chem. 1994 Sep 9;269(36):22628–22635. [PubMed] [Google Scholar]
  11. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  12. Hannun Y. A., Bell R. M. Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science. 1987 Feb 6;235(4789):670–674. doi: 10.1126/science.3101176. [DOI] [PubMed] [Google Scholar]
  13. Himmel H. M., Meyer zu Heringdorf D., Windorfer B., van Koppen C. J., Ravens U., Jakobs K. H. Guanine nucleotide-sensitive inhibition of L-type Ca2+ current by lysosphingolipids in RINm5F insulinoma cells. Mol Pharmacol. 1998 May;53(5):862–869. [PubMed] [Google Scholar]
  14. Igisu H., Hamasaki N., Ito A., Ou W. Inhibition of cytochrome c oxidase and hemolysis caused by lysosphingolipids. Lipids. 1988 Apr;23(4):345–348. doi: 10.1007/BF02537346. [DOI] [PubMed] [Google Scholar]
  15. Imagawa T., Smith J. S., Coronado R., Campbell K. P. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J Biol Chem. 1987 Dec 5;262(34):16636–16643. [PubMed] [Google Scholar]
  16. Ji Y., Loukianov E., Periasamy M. Analysis of sarcoplasmic reticulum Ca2+ transport and Ca2+ ATPase enzymatic properties using mouse cardiac tissue homogenates. Anal Biochem. 1999 May 1;269(2):236–244. doi: 10.1006/abio.1999.4059. [DOI] [PubMed] [Google Scholar]
  17. Korkotian E., Schwarz A., Pelled D., Schwarzmann G., Segal M., Futerman A. H. Elevation of intracellular glucosylceramide levels results in an increase in endoplasmic reticulum density and in functional calcium stores in cultured neurons. J Biol Chem. 1999 Jul 30;274(31):21673–21678. doi: 10.1074/jbc.274.31.21673. [DOI] [PubMed] [Google Scholar]
  18. Liu R., Farach-Carson M. C., Karin N. J. Effects of sphingosine derivatives on MC3T3-E1 pre-osteoblasts: psychosine elicits release of calcium from intracellualr stores. Biochem Biophys Res Commun. 1995 Sep 14;214(2):676–684. doi: 10.1006/bbrc.1995.2339. [DOI] [PubMed] [Google Scholar]
  19. Lloyd-Evans Emyr, Pelled Dori, Riebeling Christian, Bodennec Jacques, de-Morgan Aviv, Waller Helen, Schiffmann Raphael, Futerman Anthony H. Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J Biol Chem. 2003 Apr 22;278(26):23594–23599. doi: 10.1074/jbc.M300212200. [DOI] [PubMed] [Google Scholar]
  20. Mikoshiba K. The InsP3 receptor and intracellular Ca2+ signaling. Curr Opin Neurobiol. 1997 Jun;7(3):339–345. doi: 10.1016/s0959-4388(97)80061-x. [DOI] [PubMed] [Google Scholar]
  21. Nilsson O., Svennerholm L. Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J Neurochem. 1982 Sep;39(3):709–718. doi: 10.1111/j.1471-4159.1982.tb07950.x. [DOI] [PubMed] [Google Scholar]
  22. Nowycky Martha C., Thomas Andrew P. Intracellular calcium signaling. J Cell Sci. 2002 Oct 1;115(Pt 19):3715–3716. doi: 10.1242/jcs.00078. [DOI] [PubMed] [Google Scholar]
  23. Okajima F., Kondo Y. Pertussis toxin inhibits phospholipase C activation and Ca2+ mobilization by sphingosylphosphorylcholine and galactosylsphingosine in HL60 leukemia cells. Implications of GTP-binding protein-coupled receptors for lysosphingolipids. J Biol Chem. 1995 Nov 3;270(44):26332–26340. doi: 10.1074/jbc.270.44.26332. [DOI] [PubMed] [Google Scholar]
  24. Palade P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. III. Block of Ca2+-induced Ca2+ release by organic polyamines. J Biol Chem. 1987 May 5;262(13):6149–6154. [PubMed] [Google Scholar]
  25. Pelled D., Shogomori H., Futerman A. H. The increased sensitivity of neurons with elevated glucocerebroside to neurotoxic agents can be reversed by imiglucerase. J Inherit Metab Dis. 2000 Mar;23(2):175–184. doi: 10.1023/a:1005622001239. [DOI] [PubMed] [Google Scholar]
  26. Sohal P. S., Cornell R. B. Sphingosine inhibits the activity of rat liver CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1990 Jul 15;265(20):11746–11750. [PubMed] [Google Scholar]
  27. Suzuki K. Twenty five years of the "psychosine hypothesis": a personal perspective of its history and present status. Neurochem Res. 1998 Mar;23(3):251–259. doi: 10.1023/a:1022436928925. [DOI] [PubMed] [Google Scholar]
  28. Treiman M., Caspersen C., Christensen S. B. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases. Trends Pharmacol Sci. 1998 Apr;19(4):131–135. doi: 10.1016/s0165-6147(98)01184-5. [DOI] [PubMed] [Google Scholar]
  29. Tybulewicz V. L., Tremblay M. L., LaMarca M. E., Willemsen R., Stubblefield B. K., Winfield S., Zablocka B., Sidransky E., Martin B. M., Huang S. P. Animal model of Gaucher's disease from targeted disruption of the mouse glucocerebrosidase gene. Nature. 1992 Jun 4;357(6377):407–410. doi: 10.1038/357407a0. [DOI] [PubMed] [Google Scholar]
  30. Wells K. M., Abercrombie R. F. Luminal Ca2+ protects against thapsigargin inhibition in neuronal endoplasmic reticulum. J Biol Chem. 1998 Feb 27;273(9):5020–5025. doi: 10.1074/jbc.273.9.5020. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES