Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):793–798. doi: 10.1042/BJ20030866

Functional studies of hephaestin in yeast: evidence for multicopper oxidase activity in the endocytic pathway.

Liangtao Li 1, Chris D Vulpe 1, Jerry Kaplan 1
PMCID: PMC1223732  PMID: 12921533

Abstract

Hephaestin is a mammalian gene that encodes a predicted multicopper oxidase required for intestinal iron export. To examine if hephaestin can act as a ferroxidase, we studied yeast strains transformed with plasmids containing both a full-length hephaestin and a hephaestin lacking a transmembrane domain. Yeast with a deletion in FET3, which encodes a cell-surface multicopper oxidase, cannot grow on low-iron media. Expression of full-length hephaestin could complement the low-iron growth phenotype of a Delta fet3 strain. Complementation of Delta fet3 cells by hephaestin required genes that encode proteins necessary for the copper loading of Fet3p, including CCC2 and GEF1. Expression of hephaestin in Delta fet3 cells led to an increase in both iron transport and oxidase activity. These results demonstrate that hephaestin is a copper-dependent protein. In contrast with Fet3p, which is found on the cell surface, hephaestin was co-localized with Pep12p-containing vesicles. Inhibition of endocytosis or deletion of both the vacuolar iron transporters ( SMF3 and FET5 / FTH1 ) prevented hephaestin from complementing the low-iron growth phenotype of Delta fet3 cells, suggesting that hephaestin is functioning within the endocytic apparatus.

Full Text

The Full Text of this article is available as a PDF (186.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell. 1994 Jan 28;76(2):403–410. doi: 10.1016/0092-8674(94)90346-8. [DOI] [PubMed] [Google Scholar]
  2. Askwith C., Kaplan J. An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J Biol Chem. 1997 Jan 3;272(1):401–405. doi: 10.1074/jbc.272.1.401. [DOI] [PubMed] [Google Scholar]
  3. Attieh Z. K., Mukhopadhyay C. K., Seshadri V., Tripoulas N. A., Fox P. L. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism. J Biol Chem. 1999 Jan 8;274(2):1116–1123. doi: 10.1074/jbc.274.2.1116. [DOI] [PubMed] [Google Scholar]
  4. Dancis A., Yuan D. S., Haile D., Askwith C., Eide D., Moehle C., Kaplan J., Klausner R. D. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell. 1994 Jan 28;76(2):393–402. doi: 10.1016/0092-8674(94)90345-x. [DOI] [PubMed] [Google Scholar]
  5. Davis-Kaplan S. R., Askwith C. C., Bengtzen A. C., Radisky D., Kaplan J. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13641–13645. doi: 10.1073/pnas.95.23.13641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dix D. R., Bridgham J. T., Broderius M. A., Byersdorfer C. A., Eide D. J. The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem. 1994 Oct 21;269(42):26092–26099. [PubMed] [Google Scholar]
  7. Frazer D. M., Vulpe C. D., McKie A. T., Wilkins S. J., Trinder D., Cleghorn G. J., Anderson G. J. Cloning and gastrointestinal expression of rat hephaestin: relationship to other iron transport proteins. Am J Physiol Gastrointest Liver Physiol. 2001 Oct;281(4):G931–G939. doi: 10.1152/ajpgi.2001.281.4.G931. [DOI] [PubMed] [Google Scholar]
  8. Gaxiola R. A., Yuan D. S., Klausner R. D., Fink G. R. The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):4046–4050. doi: 10.1073/pnas.95.7.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gitan R. S., Luo H., Rodgers J., Broderius M., Eide D. Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. J Biol Chem. 1998 Oct 30;273(44):28617–28624. doi: 10.1074/jbc.273.44.28617. [DOI] [PubMed] [Google Scholar]
  10. Glick B. S., Pon L. A. Isolation of highly purified mitochondria from Saccharomyces cerevisiae. Methods Enzymol. 1995;260:213–223. doi: 10.1016/0076-6879(95)60139-2. [DOI] [PubMed] [Google Scholar]
  11. Greene J. R., Brown N. H., DiDomenico B. J., Kaplan J., Eide D. J. The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth. Mol Gen Genet. 1993 Dec;241(5-6):542–553. doi: 10.1007/BF00279896. [DOI] [PubMed] [Google Scholar]
  12. Harris Z. L., Durley A. P., Man T. K., Gitlin J. D. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10812–10817. doi: 10.1073/pnas.96.19.10812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Li L., Kaplan J. The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. J Biol Chem. 2000 Oct 31;276(7):5036–5043. doi: 10.1074/jbc.M008969200. [DOI] [PubMed] [Google Scholar]
  14. Mukhopadhyay C. K., Attieh Z. K., Fox P. L. Role of ceruloplasmin in cellular iron uptake. Science. 1998 Jan 30;279(5351):714–717. doi: 10.1126/science.279.5351.714. [DOI] [PubMed] [Google Scholar]
  15. Okamoto N., Wada S., Oga T., Kawabata Y., Baba Y., Habu D., Takeda Z., Wada Y. Hereditary ceruloplasmin deficiency with hemosiderosis. Hum Genet. 1996 Jun;97(6):755–758. doi: 10.1007/BF02346185. [DOI] [PubMed] [Google Scholar]
  16. Osaki S., Johnson D. A., Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem. 1966 Jun 25;241(12):2746–2751. [PubMed] [Google Scholar]
  17. Portnoy M. E., Liu X. F., Culotta V. C. Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters. Mol Cell Biol. 2000 Nov;20(21):7893–7902. doi: 10.1128/mcb.20.21.7893-7902.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ragan H. A., Nacht S., Lee G. R., Bishop C. R., Cartwright G. E. Effect of ceruloplasmin on plasma iron in copper-deficient swine. Am J Physiol. 1969 Nov;217(5):1320–1323. doi: 10.1152/ajplegacy.1969.217.5.1320. [DOI] [PubMed] [Google Scholar]
  19. Spizzo T., Byersdorfer C., Duesterhoeft S., Eide D. The yeast FET5 gene encodes a FET3-related multicopper oxidase implicated in iron transport. Mol Gen Genet. 1997 Nov;256(5):547–556. doi: 10.1007/pl00008615. [DOI] [PubMed] [Google Scholar]
  20. Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science. 1996 Mar 15;271(5255):1552–1557. doi: 10.1126/science.271.5255.1552. [DOI] [PubMed] [Google Scholar]
  21. Syed Basharut A., Beaumont Nick J., Patel Alpesh, Naylor Claire E., Bayele Henry K., Joannou Christopher L., Rowe Peter S. N., Evans Robert W., Srai S. Kaila S. Analysis of the human hephaestin gene and protein: comparative modelling of the N-terminus ecto-domain based upon ceruloplasmin. Protein Eng. 2002 Mar;15(3):205–214. doi: 10.1093/protein/15.3.205. [DOI] [PubMed] [Google Scholar]
  22. Urbanowski J. L., Piper R. C. The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem. 1999 Dec 31;274(53):38061–38070. doi: 10.1074/jbc.274.53.38061. [DOI] [PubMed] [Google Scholar]
  23. Vulpe C. D., Kuo Y. M., Murphy T. L., Cowley L., Askwith C., Libina N., Gitschier J., Anderson G. J. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet. 1999 Feb;21(2):195–199. doi: 10.1038/5979. [DOI] [PubMed] [Google Scholar]
  24. Yuan D. S., Stearman R., Dancis A., Dunn T., Beeler T., Klausner R. D. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2632–2636. doi: 10.1073/pnas.92.7.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yun C. W., Ferea T., Rashford J., Ardon O., Brown P. O., Botstein D., Kaplan J., Philpott C. C. Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem. 2000 Apr 7;275(14):10709–10715. doi: 10.1074/jbc.275.14.10709. [DOI] [PubMed] [Google Scholar]
  26. de Silva D., Davis-Kaplan S., Fergestad J., Kaplan J. Purification and characterization of Fet3 protein, a yeast homologue of ceruloplasmin. J Biol Chem. 1997 May 30;272(22):14208–14213. doi: 10.1074/jbc.272.22.14208. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES