Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):603–611. doi: 10.1042/BJ20030828

Proteolysis of type I inositol 1,4,5-trisphosphate receptor in WB rat liver cells.

M Tariq Khan 1, Suresh K Joseph 1
PMCID: PMC1223733  PMID: 12927021

Abstract

A comparison of the basal degradation of type I Ins P3Rs [L- myo -inositol 1,4,5-trisphosphate receptor], measured by pulse-chase analysis or by analysis of immunoreactive Ins P3Rs after cycloheximide addition, indicated that the small pool of newly synthesized radioactive Ins P3Rs degraded relatively rapidly compared with the large pool of mature Ins P3Rs. An antibody (Ab) against a peptide sequence within the IL-3 (third intraluminal loop) of the receptor (IL-3 Ab) was used to identify protected proteolytic fragments that may accumulate in cells. The IL-3 Ab recognized a 56 kDa fragment in both WB rat liver cells and A7R5 smooth-muscle cells. Gel filtration experiments indicated that the 56 kDa fragment was monomeric and, based on reactivity to other Abs, was missing the cytosol-exposed N- and C-terminal segments of the receptor. The addition of the lysosomal protease inhibitor chloroquine resulted in the rapid disappearance of the 56 kDa band. This effect was mimicked by the cysteine protease inhibitors leupeptin, N -acetyl-L-leucyl-L-leucyl-L-methioninal and N -acetyl-leucyl-leucyl-norleucinal. Lactacystin and NH4Cl were less effective. A second fragment of 16 kDa containing the C-terminus accumulated only when the cells were treated with NH4Cl, and not with any of the other inhibitors tested. No N-terminal-reactive fragments were observed. We propose that mature Ins P3R tetramers dissociate into monomers and that the 56 kDa fragment is a cleavage intermediate of the monomer representing the six transmembrane domains. Angiotensin-II-stimulated down-regulation of Ins P3Rs in WB cells has been shown to involve the ubiquitin/proteasome pathway. Angiotensin-II treatment of WB cells neither resulted in the accumulation of any new fragments nor increased the levels of the 56 or 16 kDa fragments. We conclude that basal and agonist-stimulated degradations of Ins P3Rs occur by different pathways. The agonist-mediated pathway involves the concerted removal and proteolysis of the entire receptor molecule from the endoplasmic reticulum membrane without the appearance of intermediate intraluminal fragments.

Full Text

The Full Text of this article is available as a PDF (268.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  2. Boehning D., Joseph S. K. Functional properties of recombinant type I and type III inositol 1, 4,5-trisphosphate receptor isoforms expressed in COS-7 cells. J Biol Chem. 2000 Jul 14;275(28):21492–21499. doi: 10.1074/jbc.M001724200. [DOI] [PubMed] [Google Scholar]
  3. Bokkala S., Joseph S. K. Angiotensin II-induced down-regulation of inositol trisphosphate receptors in WB rat liver epithelial cells. Evidence for involvement of the proteasome pathway. J Biol Chem. 1997 May 9;272(19):12454–12461. doi: 10.1074/jbc.272.19.12454. [DOI] [PubMed] [Google Scholar]
  4. Brind S., Swann K., Carroll J. Inositol 1,4,5-trisphosphate receptors are downregulated in mouse oocytes in response to sperm or adenophostin A but not to increases in intracellular Ca(2+) or egg activation. Dev Biol. 2000 Jul 15;223(2):251–265. doi: 10.1006/dbio.2000.9728. [DOI] [PubMed] [Google Scholar]
  5. Davis R. A. Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. Biochim Biophys Acta. 1999 Aug 25;1440(1):1–31. doi: 10.1016/s1388-1981(99)00083-9. [DOI] [PubMed] [Google Scholar]
  6. Ellgaard Lars, Helenius Ari. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol. 2003 Mar;4(3):181–191. doi: 10.1038/nrm1052. [DOI] [PubMed] [Google Scholar]
  7. Fayadat L., Siffroi-Fernandez S., Lanet J., Franc J. L. Degradation of human thyroperoxidase in the endoplasmic reticulum involves two different pathways depending on the folding state of the protein. J Biol Chem. 2000 May 26;275(21):15948–15954. doi: 10.1074/jbc.M905763199. [DOI] [PubMed] [Google Scholar]
  8. Galvan D. L., Borrego-Diaz E., Perez P. J., Mignery G. A. Subunit oligomerization, and topology of the inositol 1,4, 5-trisphosphate receptor. J Biol Chem. 1999 Oct 8;274(41):29483–29492. doi: 10.1074/jbc.274.41.29483. [DOI] [PubMed] [Google Scholar]
  9. Galvan Daniel L., Mignery Gregory A. Carboxyl-terminal sequences critical for inositol 1,4,5-trisphosphate receptor subunit assembly. J Biol Chem. 2002 Oct 10;277(50):48248–48260. doi: 10.1074/jbc.M209990200. [DOI] [PubMed] [Google Scholar]
  10. Gelman Marina S., Kannegaard Elisa S., Kopito Ron R. A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator. J Biol Chem. 2002 Jan 25;277(14):11709–11714. doi: 10.1074/jbc.M111958200. [DOI] [PubMed] [Google Scholar]
  11. Hilton D. J., Watowich S. S., Murray P. J., Lodish H. F. Increased cell surface expression and enhanced folding in the endoplasmic reticulum of a mutant erythropoietin receptor. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):190–194. doi: 10.1073/pnas.92.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huppa J. B., Ploegh H. L. The alpha chain of the T cell antigen receptor is degraded in the cytosol. Immunity. 1997 Jul;7(1):113–122. doi: 10.1016/s1074-7613(00)80514-2. [DOI] [PubMed] [Google Scholar]
  13. Jellerette T., He C. L., Wu H., Parys J. B., Fissore R. A. Down-regulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation. Dev Biol. 2000 Jul 15;223(2):238–250. doi: 10.1006/dbio.2000.9675. [DOI] [PubMed] [Google Scholar]
  14. Joseph S. K. Biosynthesis of the inositol trisphosphate receptor in WB rat liver epithelial cells. J Biol Chem. 1994 Feb 25;269(8):5673–5679. [PubMed] [Google Scholar]
  15. Joseph S. K., Boehning D., Bokkala S., Watkins R., Widjaja J. Biosynthesis of inositol trisphosphate receptors: selective association with the molecular chaperone calnexin. Biochem J. 1999 Aug 15;342(Pt 1):153–161. [PMC free article] [PubMed] [Google Scholar]
  16. Joseph S. K., Boehning D., Pierson S., Nicchitta C. V. Membrane insertion, glycosylation, and oligomerization of inositol trisphosphate receptors in a cell-free translation system. J Biol Chem. 1997 Jan 17;272(3):1579–1588. doi: 10.1074/jbc.272.3.1579. [DOI] [PubMed] [Google Scholar]
  17. Joseph S. K., Bokkala S., Boehning D., Zeigler S. Factors determining the composition of inositol trisphosphate receptor hetero-oligomers expressed in COS cells. J Biol Chem. 2000 May 26;275(21):16084–16090. doi: 10.1074/jbc.M000506200. [DOI] [PubMed] [Google Scholar]
  18. Joseph S. K., Pierson S., Samanta S. Trypsin digestion of the inositol trisphosphate receptor: implications for the conformation and domain organization of the protein. Biochem J. 1995 May 1;307(Pt 3):859–865. doi: 10.1042/bj3070859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Joseph S. K., Samanta S. Detergent solubility of the inositol trisphosphate receptor in rat brain membranes. Evidence for association of the receptor with ankyrin. J Biol Chem. 1993 Mar 25;268(9):6477–6486. [PubMed] [Google Scholar]
  20. Kopito R. R. Biosynthesis and degradation of CFTR. Physiol Rev. 1999 Jan;79(1 Suppl):S167–S173. doi: 10.1152/physrev.1999.79.1.S167. [DOI] [PubMed] [Google Scholar]
  21. Kume S., Saneyoshi T., Mikoshiba K. Desensitization of IP3-induced Ca2+ release by overexpression of a constitutively active Gqalpha protein converts ventral to dorsal fate in Xenopus early embryos. Dev Growth Differ. 2000 Aug;42(4):327–335. doi: 10.1046/j.1440-169x.2000.00519.x. [DOI] [PubMed] [Google Scholar]
  22. Lee B., Gai W., Laychock S. G. Proteasomal activation mediates down-regulation of inositol 1,4,5-trisphosphate receptor and calcium mobilization in rat pancreatic islets. Endocrinology. 2001 May;142(5):1744–1751. doi: 10.1210/endo.142.5.8150. [DOI] [PubMed] [Google Scholar]
  23. Mangeat P., Roy C., Martin M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 1999 May;9(5):187–192. doi: 10.1016/s0962-8924(99)01544-5. [DOI] [PubMed] [Google Scholar]
  24. Michikawa T., Hamanaka H., Otsu H., Yamamoto A., Miyawaki A., Furuichi T., Tashiro Y., Mikoshiba K. Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1994 Mar 25;269(12):9184–9189. [PubMed] [Google Scholar]
  25. Mignery G. A., Südhof T. C. The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J. 1990 Dec;9(12):3893–3898. doi: 10.1002/j.1460-2075.1990.tb07609.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Misra U. K., Gawdi G., Pizzo S. V. Chloroquine, quinine and quinidine inhibit calcium release from macrophage intracellular stores by blocking inositol 1,4,5-trisphosphate binding to its receptor. J Cell Biochem. 1997 Feb;64(2):225–232. doi: 10.1002/(sici)1097-4644(199702)64:2<225::aid-jcb6>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  27. Monkawa T., Miyawaki A., Sugiyama T., Yoneshima H., Yamamoto-Hino M., Furuichi T., Saruta T., Hasegawa M., Mikoshiba K. Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem. 1995 Jun 16;270(24):14700–14704. doi: 10.1074/jbc.270.24.14700. [DOI] [PubMed] [Google Scholar]
  28. Oberdorf J., Webster J. M., Zhu C. C., Luo S. G., Wojcikiewicz R. J. Down-regulation of types I, II and III inositol 1,4,5-trisphosphate receptors is mediated by the ubiquitin/proteasome pathway. Biochem J. 1999 Apr 15;339(Pt 2):453–461. [PMC free article] [PubMed] [Google Scholar]
  29. Patel S., Joseph S. K., Thomas A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium. 1999 Mar;25(3):247–264. doi: 10.1054/ceca.1999.0021. [DOI] [PubMed] [Google Scholar]
  30. Petaja-Repo U. E., Hogue M., Laperriere A., Walker P., Bouvier M. Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J Biol Chem. 2000 May 5;275(18):13727–13736. doi: 10.1074/jbc.275.18.13727. [DOI] [PubMed] [Google Scholar]
  31. Ramos-Franco J., Galvan D., Mignery G. A., Fill M. Location of the permeation pathway in the recombinant type 1 inositol 1,4,5-trisphosphate receptor. J Gen Physiol. 1999 Aug;114(2):243–250. doi: 10.1085/jgp.114.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schrader-Fischer G., Paganetti P. A. Effect of alkalizing agents on the processing of the beta-amyloid precursor protein. Brain Res. 1996 Apr 15;716(1-2):91–100. doi: 10.1016/0006-8993(96)00002-9. [DOI] [PubMed] [Google Scholar]
  33. Sipma H., Deelman L., Smedt H. D., Missiaen L., Parys J. B., Vanlingen S., Henning R. H., Casteels R. Agonist-induced down-regulation of type 1 and type 3 inositol 1,4,5-trisphosphate receptors in A7r5 and DDT1 MF-2 smooth muscle cells. Cell Calcium. 1998 Jan;23(1):11–21. doi: 10.1016/s0143-4160(98)90070-7. [DOI] [PubMed] [Google Scholar]
  34. Tafani Marco, Cohn Joshua A., Karpinich Natalie O., Rothman Ronald J., Russo Matteo A., Farber John L. Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha. J Biol Chem. 2002 Oct 18;277(51):49569–49576. doi: 10.1074/jbc.M208915200. [DOI] [PubMed] [Google Scholar]
  35. Weber S. M., Levitz S. M. Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. J Immunol. 2000 Aug 1;165(3):1534–1540. doi: 10.4049/jimmunol.165.3.1534. [DOI] [PubMed] [Google Scholar]
  36. Wojcikiewicz R. J., Furuichi T., Nakade S., Mikoshiba K., Nahorski S. R. Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J Biol Chem. 1994 Mar 18;269(11):7963–7969. [PubMed] [Google Scholar]
  37. Wojcikiewicz R. J., He Y. Type I, II and III inositol 1,4,5-trisphosphate receptor co-immunoprecipitation as evidence for the existence of heterotetrameric receptor complexes. Biochem Biophys Res Commun. 1995 Aug 4;213(1):334–341. doi: 10.1006/bbrc.1995.2134. [DOI] [PubMed] [Google Scholar]
  38. Wojcikiewicz R. J. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem. 1995 May 12;270(19):11678–11683. doi: 10.1074/jbc.270.19.11678. [DOI] [PubMed] [Google Scholar]
  39. Xiong X., Chong E., Skach W. R. Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J Biol Chem. 1999 Jan 29;274(5):2616–2624. doi: 10.1074/jbc.274.5.2616. [DOI] [PubMed] [Google Scholar]
  40. Yoshikawa F., Iwasaki H., Michikawa T., Furuichi T., Mikoshiba K. Trypsinized cerebellar inositol 1,4,5-trisphosphate receptor. Structural and functional coupling of cleaved ligand binding and channel domains. J Biol Chem. 1999 Jan 1;274(1):316–327. doi: 10.1074/jbc.274.1.316. [DOI] [PubMed] [Google Scholar]
  41. Zhu C. C., Wojcikiewicz R. J. Ligand binding directly stimulates ubiquitination of the inositol 1, 4,5-trisphosphate receptor. Biochem J. 2000 Jun 15;348(Pt 3):551–556. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES