Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):517–529. doi: 10.1042/BJ20031061

Regulation and organization of adenylyl cyclases and cAMP.

Dermot M F Cooper 1
PMCID: PMC1223734  PMID: 12940771

Abstract

Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments.

Full Text

The Full Text of this article is available as a PDF (280.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. R., Harootunian A. T., Buechler Y. J., Taylor S. S., Tsien R. Y. Fluorescence ratio imaging of cyclic AMP in single cells. Nature. 1991 Feb 21;349(6311):694–697. doi: 10.1038/349694a0. [DOI] [PubMed] [Google Scholar]
  2. Altiok N., Fredholm B. B. Bradykinin inhibits cyclic AMP accumulation in D384-human astrocytoma cells via a calcium-dependent inhibition of adenylyl cyclase. Cell Signal. 1993 May;5(3):279–288. doi: 10.1016/0898-6568(93)90018-h. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. G. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
  4. Antoni F. A., Barnard R. J., Shipston M. J., Smith S. M., Simpson J., Paterson J. M. Calcineurin feedback inhibition of agonist-evoked cAMP formation. J Biol Chem. 1995 Nov 24;270(47):28055–28061. doi: 10.1074/jbc.270.47.28055. [DOI] [PubMed] [Google Scholar]
  5. Antoni F. A., Palkovits M., Simpson J., Smith S. M., Leitch A. L., Rosie R., Fink G., Paterson J. M. Ca2+/calcineurin-inhibited adenylyl cyclase, highly abundant in forebrain regions, is important for learning and memory. J Neurosci. 1998 Dec 1;18(23):9650–9661. doi: 10.1523/JNEUROSCI.18-23-09650.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bakalyar H. A., Reed R. R. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science. 1990 Dec 7;250(4986):1403–1406. doi: 10.1126/science.2255909. [DOI] [PubMed] [Google Scholar]
  7. Balázs R., Miller S., Chun Y., Cotman C. W. Receptor-coupled phospholipase C and adenylyl cyclase function with different calcium pools in astrocytes. Neuroreport. 1998 May 11;9(7):1397–1401. doi: 10.1097/00001756-199805110-00027. [DOI] [PubMed] [Google Scholar]
  8. Beavo Joseph A., Brunton Laurence L. Cyclic nucleotide research -- still expanding after half a century. Nat Rev Mol Cell Biol. 2002 Sep;3(9):710–718. doi: 10.1038/nrm911. [DOI] [PubMed] [Google Scholar]
  9. Birnbaumer L. Transduction of receptor signal into modulation of effector activity by G proteins: the first 20 years or so .... FASEB J. 1990 Nov;4(14):3178–3188. doi: 10.1096/fasebj.4.14.2172060. [DOI] [PubMed] [Google Scholar]
  10. Blau L., Weissmann G. Transmembrane calcium movements mediated by ionomycin and phosphatidate in liposomes with Fura 2 entrapped. Biochemistry. 1988 Jul 26;27(15):5661–5666. doi: 10.1021/bi00415a040. [DOI] [PubMed] [Google Scholar]
  11. Boyajian C. L., Garritsen A., Cooper D. M. Bradykinin stimulates Ca2+ mobilization in NCB-20 cells leading to direct inhibition of adenylylcyclase. A novel mechanism for inhibition of cAMP production. J Biol Chem. 1991 Mar 15;266(8):4995–5003. [PubMed] [Google Scholar]
  12. Buck J., Sinclair M. L., Schapal L., Cann M. J., Levin L. R. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):79–84. doi: 10.1073/pnas.96.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Burnay M. M., Vallotton M. B., Capponi A. M., Rossier M. F. Angiotensin II potentiates adrenocorticotrophic hormone-induced cAMP formation in bovine adrenal glomerulosa cells through a capacitative calcium influx. Biochem J. 1998 Feb 15;330(Pt 1):21–27. doi: 10.1042/bj3300021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Buxton I. L., Brunton L. L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem. 1983 Sep 10;258(17):10233–10239. [PubMed] [Google Scholar]
  15. Caldwell K. K., Boyajian C. L., Cooper D. M. The effects of Ca2+ and calmodulin on adenylyl cyclase activity in plasma membranes derived from neural and non-neural cells. Cell Calcium. 1992 Feb;13(2):107–121. doi: 10.1016/0143-4160(92)90004-c. [DOI] [PubMed] [Google Scholar]
  16. Cali J. J., Zwaagstra J. C., Mons N., Cooper D. M., Krupinski J. Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem. 1994 Apr 22;269(16):12190–12195. [PubMed] [Google Scholar]
  17. Chabardès D., Imbert-Teboul M., Elalouf J. M. Functional properties of Ca2+-inhibitable type 5 and type 6 adenylyl cyclases and role of Ca2+ increase in the inhibition of intracellular cAMP content. Cell Signal. 1999 Sep;11(9):651–663. doi: 10.1016/s0898-6568(99)00031-5. [DOI] [PubMed] [Google Scholar]
  18. Chen Y., Cann M. J., Litvin T. N., Iourgenko V., Sinclair M. L., Levin L. R., Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science. 2000 Jul 28;289(5479):625–628. doi: 10.1126/science.289.5479.625. [DOI] [PubMed] [Google Scholar]
  19. Chen Z., Nield H. S., Sun H., Barbier A., Patel T. B. Expression of type V adenylyl cyclase is required for epidermal growth factor-mediated stimulation of cAMP accumulation. J Biol Chem. 1995 Nov 17;270(46):27525–27530. doi: 10.1074/jbc.270.46.27525. [DOI] [PubMed] [Google Scholar]
  20. Chetkovich D. M., Sweatt J. D. nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J Neurochem. 1993 Nov;61(5):1933–1942. doi: 10.1111/j.1471-4159.1993.tb09836.x. [DOI] [PubMed] [Google Scholar]
  21. Chiono M., Mahey R., Tate G., Cooper D. M. Capacitative Ca2+ entry exclusively inhibits cAMP synthesis in C6-2B glioma cells. Evidence that physiologically evoked Ca2+ entry regulates Ca(2+)-inhibitable adenylyl cyclase in non-excitable cells. J Biol Chem. 1995 Jan 20;270(3):1149–1155. doi: 10.1074/jbc.270.3.1149. [DOI] [PubMed] [Google Scholar]
  22. Choi E. J., Xia Z., Storm D. R. Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry. 1992 Jul 21;31(28):6492–6498. doi: 10.1021/bi00143a019. [DOI] [PubMed] [Google Scholar]
  23. Cioffi Donna L., Moore Timothy M., Schaack Jerry, Creighton Judy R., Cooper Dermot M. F., Stevens Troy. Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase. J Cell Biol. 2002 Jun 24;157(7):1267–1278. doi: 10.1083/jcb.200204022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Colvin R. A., Oibo J. A., Allen R. A. Calcium inhibition of cardiac adenylyl cyclase. Evidence for two distinct sites of inhibition. Cell Calcium. 1991 Jan;12(1):19–27. doi: 10.1016/0143-4160(91)90081-o. [DOI] [PubMed] [Google Scholar]
  25. Conti Marco, Richter Wito, Mehats Celine, Livera Gabriel, Park Jy-Young, Jin Catherine. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem. 2002 Dec 18;278(8):5493–5496. doi: 10.1074/jbc.R200029200. [DOI] [PubMed] [Google Scholar]
  26. Cooper D. M., Brooker G. Ca(2+)-inhibited adenylyl cyclase in cardiac tissue. Trends Pharmacol Sci. 1993 Feb;14(2):34–36. doi: 10.1016/0165-6147(93)90027-h. [DOI] [PubMed] [Google Scholar]
  27. Cooper D. M., Mons N., Karpen J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995 Mar 30;374(6521):421–424. doi: 10.1038/374421a0. [DOI] [PubMed] [Google Scholar]
  28. Cooper D. M., Schell M. J., Thorn P., Irvine R. F. Regulation of adenylyl cyclase by membrane potential. J Biol Chem. 1998 Oct 16;273(42):27703–27707. doi: 10.1074/jbc.273.42.27703. [DOI] [PubMed] [Google Scholar]
  29. Cooper D. M., Yoshimura M., Zhang Y., Chiono M., Mahey R. Capacitative Ca2+ entry regulates Ca(2+)-sensitive adenylyl cyclases. Biochem J. 1994 Feb 1;297(Pt 3):437–440. doi: 10.1042/bj2970437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Corvol J. C., Studler J. M., Schonn J. S., Girault J. A., Hervé D. Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem. 2001 Mar;76(5):1585–1588. doi: 10.1046/j.1471-4159.2001.00201.x. [DOI] [PubMed] [Google Scholar]
  31. Craven S. E., El-Husseini A. E., Bredt D. S. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron. 1999 Mar;22(3):497–509. doi: 10.1016/s0896-6273(00)80705-9. [DOI] [PubMed] [Google Scholar]
  32. Dasgupta M., Honeycutt T., Blumenthal D. K. The gamma-subunit of skeletal muscle phosphorylase kinase contains two noncontiguous domains that act in concert to bind calmodulin. J Biol Chem. 1989 Oct 15;264(29):17156–17163. [PubMed] [Google Scholar]
  33. Davare M. A., Avdonin V., Hall D. D., Peden E. M., Burette A., Weinberg R. J., Horne M. C., Hoshi T., Hell J. W. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science. 2001 Jul 6;293(5527):98–101. doi: 10.1126/science.293.5527.98. [DOI] [PubMed] [Google Scholar]
  34. DeBernardi M. A., Brooker G. Single cell Ca2+/cAMP cross-talk monitored by simultaneous Ca2+/cAMP fluorescence ratio imaging. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4577–4582. doi: 10.1073/pnas.93.10.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Dell'Acqua M. L., Scott J. D. Protein kinase A anchoring. J Biol Chem. 1997 May 16;272(20):12881–12884. doi: 10.1074/jbc.272.20.12881. [DOI] [PubMed] [Google Scholar]
  36. Duhe R. J., Nielsen M. D., Dittman A. H., Villacres E. C., Choi E. J., Storm D. R. Oxidation of critical cysteine residues of type I adenylyl cyclase by o-iodosobenzoate or nitric oxide reversibly inhibits stimulation by calcium and calmodulin. J Biol Chem. 1994 Mar 11;269(10):7290–7296. [PubMed] [Google Scholar]
  37. Edelhoff S., Villacres E. C., Storm D. R., Disteche C. M. Mapping of adenylyl cyclase genes type I, II, III, IV, V, and VI in mouse. Mamm Genome. 1995 Feb;6(2):111–113. doi: 10.1007/BF00303253. [DOI] [PubMed] [Google Scholar]
  38. Fagan K. A., Graf R. A., Tolman S., Schaack J., Cooper D. M. Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative Ca2+ entry. J Biol Chem. 2000 Dec 22;275(51):40187–40194. doi: 10.1074/jbc.M006606200. [DOI] [PubMed] [Google Scholar]
  39. Fagan K. A., Mahey R., Cooper D. M. Functional co-localization of transfected Ca(2+)-stimulable adenylyl cyclases with capacitative Ca2+ entry sites. J Biol Chem. 1996 May 24;271(21):12438–12444. doi: 10.1074/jbc.271.21.12438. [DOI] [PubMed] [Google Scholar]
  40. Fagan K. A., Mons N., Cooper D. M. Dependence of the Ca2+-inhibitable adenylyl cyclase of C6-2B glioma cells on capacitative Ca2+ entry. J Biol Chem. 1998 Apr 10;273(15):9297–9305. doi: 10.1074/jbc.273.15.9297. [DOI] [PubMed] [Google Scholar]
  41. Fagan K. A., Rich T. C., Tolman S., Schaack J., Karpen J. W., Cooper D. M. Adenovirus-mediated expression of an olfactory cyclic nucleotide-gated channel regulates the endogenous Ca2+-inhibitable adenylyl cyclase in C6-2B glioma cells. J Biol Chem. 1999 Apr 30;274(18):12445–12453. doi: 10.1074/jbc.274.18.12445. [DOI] [PubMed] [Google Scholar]
  42. Fagan K. A., Schaack J., Zweifach A., Cooper D. M. Adenovirus encoded cyclic nucleotide-gated channels: a new methodology for monitoring cAMP in living cells. FEBS Lett. 2001 Jun 29;500(1-2):85–90. doi: 10.1016/s0014-5793(01)02564-9. [DOI] [PubMed] [Google Scholar]
  43. Fagan K. A., Smith K. E., Cooper D. M. Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains. J Biol Chem. 2000 Aug 25;275(34):26530–26537. doi: 10.1074/jbc.M001369200. [DOI] [PubMed] [Google Scholar]
  44. Gao T., Puri T. S., Gerhardstein B. L., Chien A. J., Green R. D., Hosey M. M. Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem. 1997 Aug 1;272(31):19401–19407. doi: 10.1074/jbc.272.31.19401. [DOI] [PubMed] [Google Scholar]
  45. García-Cardeña G., Martasek P., Masters B. S., Skidd P. M., Couet J., Li S., Lisanti M. P., Sessa W. C. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem. 1997 Oct 10;272(41):25437–25440. doi: 10.1074/jbc.272.41.25437. [DOI] [PubMed] [Google Scholar]
  46. Garritsen A., Zhang Y., Firestone J. A., Browning M. D., Cooper D. M. Inhibition of cyclic AMP accumulation in intact NCB-20 cells as a direct result of elevation of cytosolic Ca2+. J Neurochem. 1992 Nov;59(5):1630–1639. doi: 10.1111/j.1471-4159.1992.tb10992.x. [DOI] [PubMed] [Google Scholar]
  47. Gaudin C., Homcy C. J., Ishikawa Y. Mammalian adenylyl cyclase family members are randomly located on different chromosomes. Hum Genet. 1994 Nov;94(5):527–529. doi: 10.1007/BF00211020. [DOI] [PubMed] [Google Scholar]
  48. Gheber L. A., Edidin M. A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys J. 1999 Dec;77(6):3163–3175. doi: 10.1016/S0006-3495(99)77147-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Giannattasio G., Bianchi R., Spada A., Vallar L. Effect of calcium on adenylate cyclase of rat anterior pituitary gland. Endocrinology. 1987 Jun;120(6):2611–2619. doi: 10.1210/endo-120-6-2611. [DOI] [PubMed] [Google Scholar]
  50. Gilman A. G. Regulation of adenylyl cyclase by G proteins. Adv Second Messenger Phosphoprotein Res. 1990;24:51–57. [PubMed] [Google Scholar]
  51. Goaillard J. M., Vincent P. V., Fischmeister R. Simultaneous measurements of intracellular cAMP and L-type Ca2+ current in single frog ventricular myocytes. J Physiol. 2001 Jan 1;530(Pt 1):79–91. doi: 10.1111/j.1469-7793.2001.0079m.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Gorbunova Yuliya V., Spitzer Nicholas C. Dynamic interactions of cyclic AMP transients and spontaneous Ca(2+) spikes. Nature. 2002 Jul 4;418(6893):93–96. doi: 10.1038/nature00835. [DOI] [PubMed] [Google Scholar]
  53. Gorodinsky A., Harris D. A. Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J Cell Biol. 1995 May;129(3):619–627. doi: 10.1083/jcb.129.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Gu C., Cooper D. M. Ca(2+), Sr(2+), and Ba(2+) identify distinct regulatory sites on adenylyl cyclase (AC) types VI and VIII and consolidate the apposition of capacitative cation entry channels and Ca(2+)-sensitive ACs. J Biol Chem. 2000 Mar 10;275(10):6980–6986. doi: 10.1074/jbc.275.10.6980. [DOI] [PubMed] [Google Scholar]
  55. Gu C., Cooper D. M. Calmodulin-binding sites on adenylyl cyclase type VIII. J Biol Chem. 1999 Mar 19;274(12):8012–8021. doi: 10.1074/jbc.274.12.8012. [DOI] [PubMed] [Google Scholar]
  56. Gu C., Sorkin A., Cooper D. M. Persistent interactions between the two transmembrane clusters dictate the targeting and functional assembly of adenylyl cyclase. Curr Biol. 2001 Feb 6;11(3):185–190. doi: 10.1016/s0960-9822(01)00044-6. [DOI] [PubMed] [Google Scholar]
  57. Gu Chen, Cali James J., Cooper Dermot M. F. Dimerization of mammalian adenylate cyclases. Eur J Biochem. 2002 Jan;269(2):413–421. doi: 10.1046/j.0014-2956.2001.02708.x. [DOI] [PubMed] [Google Scholar]
  58. Guillou J. L., Nakata H., Cooper D. M. Inhibition by calcium of mammalian adenylyl cyclases. J Biol Chem. 1999 Dec 10;274(50):35539–35545. doi: 10.1074/jbc.274.50.35539. [DOI] [PubMed] [Google Scholar]
  59. Hanoune J., Defer N. Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol. 2001;41:145–174. doi: 10.1146/annurev.pharmtox.41.1.145. [DOI] [PubMed] [Google Scholar]
  60. Harden T. K., Evans T., Hepler J. R., Hughes A. R., Martin M. W., Meeker R. B., Smith M. M., Tanner L. I. Regulation of cyclic AMP metabolism by muscarinic cholinergic receptors. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1985;19:207–220. [PubMed] [Google Scholar]
  61. Heine Martin, Ponimaskin Evgeni, Bickmeyer Ulf, Richter Diethelm W. 5-HT-receptor-induced changes of the intracellular cAMP level monitored by a hyperpolarization-activated cation channel. Pflugers Arch. 2001 Sep 22;443(3):418–426. doi: 10.1007/s004240100690. [DOI] [PubMed] [Google Scholar]
  62. Hering Heike, Lin Chih-Chun, Sheng Morgan. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci. 2003 Apr 15;23(8):3262–3271. doi: 10.1523/JNEUROSCI.23-08-03262.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Hill J., Howlett A., Klein C. Nitric oxide selectively inhibits adenylyl cyclase isoforms 5 and 6. Cell Signal. 2000 Apr;12(4):233–237. doi: 10.1016/s0898-6568(99)00082-0. [DOI] [PubMed] [Google Scholar]
  64. Houslay M. D., Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci. 1997 Jun;22(6):217–224. doi: 10.1016/s0968-0004(97)01050-5. [DOI] [PubMed] [Google Scholar]
  65. Hu Biao, Nakata Hiroko, Gu Chen, De Beer Tonny, Cooper Dermot M. F. A critical interplay between Ca2+ inhibition and activation by Mg2+ of AC5 revealed by mutants and chimeric constructs. J Biol Chem. 2002 Jun 13;277(36):33139–33147. doi: 10.1074/jbc.M112373200. [DOI] [PubMed] [Google Scholar]
  66. Huang C., Hepler J. R., Chen L. T., Gilman A. G., Anderson R. G., Mumby S. M. Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell. 1997 Dec;8(12):2365–2378. doi: 10.1091/mbc.8.12.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Hurley J. H. Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem. 1999 Mar 19;274(12):7599–7602. doi: 10.1074/jbc.274.12.7599. [DOI] [PubMed] [Google Scholar]
  68. Iseki Mineo, Matsunaga Shigeru, Murakami Akio, Ohno Kaoru, Shiga Kiyoshi, Yoshida Kazuichi, Sugai Michizo, Takahashi Tetsuo, Hori Terumitsu, Watanabe Masakatsu. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature. 2002 Feb 28;415(6875):1047–1051. doi: 10.1038/4151047a. [DOI] [PubMed] [Google Scholar]
  69. Ishikawa Y., Homcy C. J. The adenylyl cyclases as integrators of transmembrane signal transduction. Circ Res. 1997 Mar;80(3):297–304. doi: 10.1161/01.res.80.3.297. [DOI] [PubMed] [Google Scholar]
  70. Ishikawa Y., Katsushika S., Chen L., Halnon N. J., Kawabe J., Homcy C. J. Isolation and characterization of a novel cardiac adenylylcyclase cDNA. J Biol Chem. 1992 Jul 5;267(19):13553–13557. [PubMed] [Google Scholar]
  71. Isshiki M., Ando J., Korenaga R., Kogo H., Fujimoto T., Fujita T., Kamiya A. Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5009–5014. doi: 10.1073/pnas.95.9.5009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Iwami G., Kawabe J., Ebina T., Cannon P. J., Homcy C. J., Ishikawa Y. Regulation of adenylyl cyclase by protein kinase A. J Biol Chem. 1995 May 26;270(21):12481–12484. doi: 10.1074/jbc.270.21.12481. [DOI] [PubMed] [Google Scholar]
  73. Iwamoto Tamio, Okumura Satoshi, Iwatsubo Kousaku, Kawabe Jun-Ichi, Ohtsu Koji, Sakai Ikuko, Hashimoto Yoko, Izumitani Aki, Sango Kazunori, Ajiki Kyoko. Motor dysfunction in type 5 adenylyl cyclase-null mice. J Biol Chem. 2003 Mar 28;278(19):16936–16940. doi: 10.1074/jbc.C300075200. [DOI] [PubMed] [Google Scholar]
  74. Jacobowitz O., Iyengar R. Phorbol ester-induced stimulation and phosphorylation of adenylyl cyclase 2. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10630–10634. doi: 10.1073/pnas.91.22.10630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Jurevicius J., Fischmeister R. cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):295–299. doi: 10.1073/pnas.93.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Klein Claudette. Nitric oxide and the other cyclic nucleotide. Cell Signal. 2002 Jun;14(6):493–498. doi: 10.1016/s0898-6568(01)00283-2. [DOI] [PubMed] [Google Scholar]
  77. Kramer R. H. Patch cramming: monitoring intracellular messengers in intact cells with membrane patches containing detector ion channels. Neuron. 1990 Mar;4(3):335–341. doi: 10.1016/0896-6273(90)90046-i. [DOI] [PubMed] [Google Scholar]
  78. Krupinski J., Coussen F., Bakalyar H. A., Tang W. J., Feinstein P. G., Orth K., Slaughter C., Reed R. R., Gilman A. G. Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science. 1989 Jun 30;244(4912):1558–1564. doi: 10.1126/science.2472670. [DOI] [PubMed] [Google Scholar]
  79. Lai H. L., Lin T. H., Kao Y. Y., Lin W. J., Hwang M. J., Chern Y. The N terminus domain of type VI adenylyl cyclase mediates its inhibition by protein kinase C. Mol Pharmacol. 1999 Sep;56(3):644–650. doi: 10.1124/mol.56.3.644. [DOI] [PubMed] [Google Scholar]
  80. Lai H. L., Yang T. H., Messing R. O., Ching Y. H., Lin S. C., Chern Y. Protein kinase C inhibits adenylyl cyclase type VI activity during desensitization of the A2a-adenosine receptor-mediated cAMP response. J Biol Chem. 1997 Feb 21;272(8):4970–4977. doi: 10.1074/jbc.272.8.4970. [DOI] [PubMed] [Google Scholar]
  81. Laporte S. A., Oakley R. H., Caron M. G. Signal transduction. Bringing channels closer to the action! Science. 2001 Jul 6;293(5527):62–63. doi: 10.1126/science.1063104. [DOI] [PubMed] [Google Scholar]
  82. Lavine Natalie, Ethier Nathalie, Oak James N., Pei Lin, Liu Fang, Trieu Phan, Rebois R. Victor, Bouvier Michel, Hebert Terence E., Van Tol Hubert H. M. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem. 2002 Sep 23;277(48):46010–46019. doi: 10.1074/jbc.M205035200. [DOI] [PubMed] [Google Scholar]
  83. Lee Ko-Woon, Hong Jang-Hee, Choi In Young, Che Yongzhe, Lee Ja-Kyeong, Yang Sung-Don, Song Chang-Woo, Kang Ho Sung, Lee Jae-Heun, Noh Jai Sung. Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J Neurosci. 2002 Sep 15;22(18):7931–7940. doi: 10.1523/JNEUROSCI.22-18-07931.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Levin L. R., Reed R. R. Identification of functional domains of adenylyl cyclase using in vivo chimeras. J Biol Chem. 1995 Mar 31;270(13):7573–7579. doi: 10.1074/jbc.270.13.7573. [DOI] [PubMed] [Google Scholar]
  85. Li Y., Ndubuka C., Rubin C. S. A kinase anchor protein 75 targets regulatory (RII) subunits of cAMP-dependent protein kinase II to the cortical actin cytoskeleton in non-neuronal cells. J Biol Chem. 1996 Jul 12;271(28):16862–16869. doi: 10.1074/jbc.271.28.16862. [DOI] [PubMed] [Google Scholar]
  86. Lin A. H., Onyike C. U., Abrams T. W. Sequence-dependent interactions between transient calcium and transmitter stimuli in activation of mammalian brain adenylyl cyclase. Brain Res. 1998 Aug 3;800(2):300–307. doi: 10.1016/s0006-8993(98)00536-8. [DOI] [PubMed] [Google Scholar]
  87. Lin Ting-Hui, Lai Hsing-Lin, Kao Yu-Ya, Sun Chung-Nan, Hwang Ming-Jing, Chern Yijuang. Protein kinase C inhibits type VI adenylyl cyclase by phosphorylating the regulatory N domain and two catalytic C1 and C2 domains. J Biol Chem. 2002 Feb 27;277(18):15721–15728. doi: 10.1074/jbc.M111537200. [DOI] [PubMed] [Google Scholar]
  88. Lin W. W., Chuang D. M. Endothelin- and ATP-induced inhibition of adenylyl cyclase activity in C6 glioma cells: role of Gi and calcium. Mol Pharmacol. 1993 Jul;44(1):158–165. [PubMed] [Google Scholar]
  89. Lindorfer M. A., Myung C. S., Savino Y., Yasuda H., Khazan R., Garrison J. C. Differential activity of the G protein beta5 gamma2 subunit at receptors and effectors. J Biol Chem. 1998 Dec 18;273(51):34429–34436. doi: 10.1074/jbc.273.51.34429. [DOI] [PubMed] [Google Scholar]
  90. Lipskaia L., Defer N., Esposito G., Hajar I., Garel M. C., Rockman H. A., Hanoune J. Enhanced cardiac function in transgenic mice expressing a Ca(2+)-stimulated adenylyl cyclase. Circ Res. 2000 Apr 14;86(7):795–801. doi: 10.1161/01.res.86.7.795. [DOI] [PubMed] [Google Scholar]
  91. Lockwich T. P., Liu X., Singh B. B., Jadlowiec J., Weiland S., Ambudkar I. S. Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem. 2000 Apr 21;275(16):11934–11942. doi: 10.1074/jbc.275.16.11934. [DOI] [PubMed] [Google Scholar]
  92. Marx Steven O., Kurokawa Junko, Reiken Steven, Motoike Howard, D'Armiento Jeanine, Marks Andrew R., Kass Robert S. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002 Jan 18;295(5554):496–499. doi: 10.1126/science.1066843. [DOI] [PubMed] [Google Scholar]
  93. Matsuoka I., Suzuki Y., Defer N., Nakanishi H., Hanoune J. Differential expression of type I, II, and V adenylyl cyclase gene in the postnatal developing rat brain. J Neurochem. 1997 Feb;68(2):498–506. doi: 10.1046/j.1471-4159.1997.68020498.x. [DOI] [PubMed] [Google Scholar]
  94. McVey M., Hill J., Howlett A., Klein C. Adenylyl cyclase, a coincidence detector for nitric oxide. J Biol Chem. 1999 Jul 2;274(27):18887–18892. doi: 10.1074/jbc.274.27.18887. [DOI] [PubMed] [Google Scholar]
  95. Mehats Celine, Andersen Carsten B., Filopanti Marcello, Jin S. L. Catherine, Conti Marco. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab. 2002 Jan-Feb;13(1):29–35. doi: 10.1016/s1043-2760(01)00523-9. [DOI] [PubMed] [Google Scholar]
  96. Melkonian K. A., Ostermeyer A. G., Chen J. Z., Roth M. G., Brown D. A. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem. 1999 Feb 5;274(6):3910–3917. doi: 10.1074/jbc.274.6.3910. [DOI] [PubMed] [Google Scholar]
  97. Michel Jennifer J. Carlisle, Scott John D. AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol. 2002;42:235–257. doi: 10.1146/annurev.pharmtox.42.083101.135801. [DOI] [PubMed] [Google Scholar]
  98. Mons N., Cooper D. M. Adenylate cyclases: critical foci in neuronal signaling. Trends Neurosci. 1995 Dec;18(12):536–542. doi: 10.1016/0166-2236(95)98375-9. [DOI] [PubMed] [Google Scholar]
  99. Mons N., Cooper D. M. Selective expression of one Ca(2+)-inhibitable adenylyl cyclase in dopaminergically innervated rat brain regions. Brain Res Mol Brain Res. 1994 Mar;22(1-4):236–244. doi: 10.1016/0169-328x(94)90052-3. [DOI] [PubMed] [Google Scholar]
  100. Mons N., Harry A., Dubourg P., Premont R. T., Iyengar R., Cooper D. M. Immunohistochemical localization of adenylyl cyclase in rat brain indicates a highly selective concentration at synapses. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8473–8477. doi: 10.1073/pnas.92.18.8473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Mons N., Yoshimura M., Cooper D. M. Discrete expression of Ca2+/calmodulin-sensitive and Ca(2+)-insensitive adenylyl cyclases in the rat brain. Synapse. 1993 May;14(1):51–59. doi: 10.1002/syn.890140108. [DOI] [PubMed] [Google Scholar]
  102. Montell C. TRP trapped in fly signaling web. Curr Opin Neurobiol. 1998 Jun;8(3):389–397. doi: 10.1016/s0959-4388(98)80066-4. [DOI] [PubMed] [Google Scholar]
  103. Muglia L. M., Schaefer M. L., Vogt S. K., Gurtner G., Imamura A., Muglia L. J. The 5'-flanking region of the mouse adenylyl cyclase type VIII gene imparts tissue-specific expression in transgenic mice. J Neurosci. 1999 Mar 15;19(6):2051–2058. doi: 10.1523/JNEUROSCI.19-06-02051.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Murthy K. S., Makhlouf G. M. Regulation of adenylyl cyclase type V/VI in smooth muscle: interplay of inhibitory G protein and Ca2+ influx. Mol Pharmacol. 1998 Jul;54(1):122–128. doi: 10.1124/mol.54.1.122. [DOI] [PubMed] [Google Scholar]
  105. Myung C. S., Garrison J. C. Role of C-terminal domains of the G protein beta subunit in the activation of effectors. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9311–9316. doi: 10.1073/pnas.97.16.9311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Nair B. G., Patel T. B. Regulation of cardiac adenylyl cyclase by epidermal growth factor (EGF). Role of EGF receptor protein tyrosine kinase activity. Biochem Pharmacol. 1993 Oct 5;46(7):1239–1245. doi: 10.1016/0006-2952(93)90473-a. [DOI] [PubMed] [Google Scholar]
  107. Nakahashi Y., Nelson E., Fagan K., Gonzales E., Guillou J. L., Cooper D. M. Construction of a full-length Ca2+-sensitive adenylyl cyclase/aequorin chimera. J Biol Chem. 1997 Jul 18;272(29):18093–18097. doi: 10.1074/jbc.272.29.18093. [DOI] [PubMed] [Google Scholar]
  108. Nelson Eric J., Hellevuo Kaisa, Yoshimura Masami, Tabakoff Boris. Ethanol-induced phosphorylation and potentiation of the activity of type 7 adenylyl cyclase. Involvement of protein kinase C delta. J Biol Chem. 2002 Nov 25;278(7):4552–4560. doi: 10.1074/jbc.M210386200. [DOI] [PubMed] [Google Scholar]
  109. Olianas M. C., Ingianni A., Onali P. Role of G protein betagamma subunits in muscarinic receptor-induced stimulation and inhibition of adenylyl cyclase activity in rat olfactory bulb. J Neurochem. 1998 Jun;70(6):2620–2627. doi: 10.1046/j.1471-4159.1998.70062620.x. [DOI] [PubMed] [Google Scholar]
  110. Onyike C. U., Lin A. H., Abrams T. W. Persistence of the interaction of calmodulin with adenylyl cyclase: implications for integration of transient calcium stimuli. J Neurochem. 1998 Sep;71(3):1298–1306. doi: 10.1046/j.1471-4159.1998.71031298.x. [DOI] [PubMed] [Google Scholar]
  111. Ostrom R. S., Violin J. D., Coleman S., Insel P. A. Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Mol Pharmacol. 2000 May;57(5):1075–1079. [PubMed] [Google Scholar]
  112. Ostrom Rennolds S., Naugle Jennifer E., Hase Miki, Gregorian Caroline, Swaney James S., Insel Paul A., Brunton Laurence L., Meszaros J. Gary. Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq-Gs cross-talk regulates collagen production in cardiac fibroblasts. J Biol Chem. 2003 Apr 23;278(27):24461–24468. doi: 10.1074/jbc.M212659200. [DOI] [PubMed] [Google Scholar]
  113. Paterson J. M., Smith S. M., Harmar A. J., Antoni F. A. Control of a novel adenylyl cyclase by calcineurin. Biochem Biophys Res Commun. 1995 Sep 25;214(3):1000–1008. doi: 10.1006/bbrc.1995.2385. [DOI] [PubMed] [Google Scholar]
  114. Pike L. J., Miller J. M. Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J Biol Chem. 1998 Aug 28;273(35):22298–22304. doi: 10.1074/jbc.273.35.22298. [DOI] [PubMed] [Google Scholar]
  115. Premont R. T., Jacobowitz O., Iyengar R. Lowered responsiveness of the catalyst of adenylyl cyclase to stimulation by GS in heterologous desensitization: a role for adenosine 3',5'-monophosphate-dependent phosphorylation. Endocrinology. 1992 Dec;131(6):2774–2784. doi: 10.1210/endo.131.6.1332848. [DOI] [PubMed] [Google Scholar]
  116. Razani B., Rubin C. S., Lisanti M. P. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. J Biol Chem. 1999 Sep 10;274(37):26353–26360. doi: 10.1074/jbc.274.37.26353. [DOI] [PubMed] [Google Scholar]
  117. Reddy R., Smith D., Wayman G., Wu Z., Villacres E. C., Storm D. R. Voltage-sensitive adenylyl cyclase activity in cultured neurons. A calcium-independent phenomenon. J Biol Chem. 1995 Jun 16;270(24):14340–14346. doi: 10.1074/jbc.270.24.14340. [DOI] [PubMed] [Google Scholar]
  118. Rich T. C., Fagan K. A., Nakata H., Schaack J., Cooper D. M., Karpen J. W. Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol. 2000 Aug;116(2):147–161. doi: 10.1085/jgp.116.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Rich T. C., Tse T. E., Rohan J. G., Schaack J., Karpen J. W. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol. 2001 Jul;118(1):63–78. doi: 10.1085/jgp.118.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Rodan S. B., Golub E. E., Egan J. J., Rodan G. A. Comparison of bone and osteosarcoma adenylate cyclase. Effects of Mg2+, Ca2+, ATP4- and HATP3- in the assay mixture. Biochem J. 1980 Mar 1;185(3):629–637. doi: 10.1042/bj1850629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Rubin C. S. A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP. Biochim Biophys Acta. 1994 Dec 30;1224(3):467–479. [PubMed] [Google Scholar]
  122. Rybin V. O., Xu X., Lisanti M. P., Steinberg S. F. Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem. 2000 Dec 29;275(52):41447–41457. doi: 10.1074/jbc.M006951200. [DOI] [PubMed] [Google Scholar]
  123. Régnauld Karine L., Leteurtre Emmanuelle, Gutkind Silvio J., Gespach Christian P., Emami Shahin. Activation of adenylyl cyclases, regulation of insulin status, and cell survival by G(alpha)olf in pancreatic beta-cells. Am J Physiol Regul Integr Comp Physiol. 2002 Mar;282(3):R870–R880. doi: 10.1152/ajpregu.00374.2001. [DOI] [PubMed] [Google Scholar]
  124. Schaefer M. L., Wong S. T., Wozniak D. F., Muglia L. M., Liauw J. A., Zhuo M., Nardi A., Hartman R. E., Vogt S. K., Luedke C. E. Altered stress-induced anxiety in adenylyl cyclase type VIII-deficient mice. J Neurosci. 2000 Jul 1;20(13):4809–4820. doi: 10.1523/JNEUROSCI.20-13-04809.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Schlegel W., Kempner E. S., Rodbell M. Activation of adenylate cyclase in hepatic membranes involves interactions of the catalytic unit with multimeric complexes of regulatory proteins. J Biol Chem. 1979 Jun 25;254(12):5168–5176. [PubMed] [Google Scholar]
  126. Schmidt M., Evellin S., Weernink P. A., von Dorp F., Rehmann H., Lomasney J. W., Jakobs K. H. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol. 2001 Nov;3(11):1020–1024. doi: 10.1038/ncb1101-1020. [DOI] [PubMed] [Google Scholar]
  127. Schultz J. E., Klumpp S., Benz R., Schürhoff-Goeters W. J., Schmid A. Regulation of adenylyl cyclase from Paramecium by an intrinsic potassium conductance. Science. 1992 Jan 31;255(5044):600–603. doi: 10.1126/science.1371017. [DOI] [PubMed] [Google Scholar]
  128. Schwencke C., Yamamoto M., Okumura S., Toya Y., Kim S. J., Ishikawa Y. Compartmentation of cyclic adenosine 3',5'-monophosphate signaling in caveolae. Mol Endocrinol. 1999 Jul;13(7):1061–1070. doi: 10.1210/mend.13.7.0304. [DOI] [PubMed] [Google Scholar]
  129. Seebacher T., Linder J. U., Schultz J. E. An isoform-specific interaction of the membrane anchors affects mammalian adenylyl cyclase type V activity. Eur J Biochem. 2001 Jan;268(1):105–110. doi: 10.1046/j.1432-1327.2001.01850.x. [DOI] [PubMed] [Google Scholar]
  130. Shaul P. W., Anderson R. G. Role of plasmalemmal caveolae in signal transduction. Am J Physiol. 1998 Nov;275(5 Pt 1):L843–L851. doi: 10.1152/ajplung.1998.275.5.L843. [DOI] [PubMed] [Google Scholar]
  131. Sheng M. Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7058–7061. doi: 10.1073/pnas.111146298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Shuttleworth T. J., Thompson J. L. Discriminating between capacitative and arachidonate-activated Ca(2+) entry pathways in HEK293 cells. J Biol Chem. 1999 Oct 29;274(44):31174–31178. doi: 10.1074/jbc.274.44.31174. [DOI] [PubMed] [Google Scholar]
  133. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  134. Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
  135. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  136. Skolnick P., Daly J. W. Stimulation of adenosine 3',5'-monophosphate formation by alpha and beta adrenergic agonists in rat cerebral cortical slices: effects of clonidine. Mol Pharmacol. 1975 Sep;11(5):545–551. [PubMed] [Google Scholar]
  137. Smith Karen E., Gu Chen, Fagan Kent A., Hu Biao, Cooper Dermot M. F. Residence of adenylyl cyclase type 8 in caveolae is necessary but not sufficient for regulation by capacitative Ca(2+) entry. J Biol Chem. 2001 Dec 13;277(8):6025–6031. doi: 10.1074/jbc.M109615200. [DOI] [PubMed] [Google Scholar]
  138. Storm D. R., Hansel C., Hacker B., Parent A., Linden D. J. Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron. 1998 Jun;20(6):1199–1210. doi: 10.1016/s0896-6273(00)80500-0. [DOI] [PubMed] [Google Scholar]
  139. Sudlow L. C., Gillette R. Cyclic AMP levels, adenylyl cyclase activity, and their stimulation by serotonin quantified in intact neurons. J Gen Physiol. 1997 Sep;110(3):243–255. doi: 10.1085/jgp.110.3.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Suh B. C., Kim T. D., Lee I. S., Kim K. T. Differential regulation of P2Y(11) receptor-mediated signalling to phospholipase C and adenylyl cyclase by protein kinase C in HL-60 promyelocytes. Br J Pharmacol. 2000 Oct;131(3):489–497. doi: 10.1038/sj.bjp.0703581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Sunahara R. K., Dessauer C. W., Gilman A. G. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol. 1996;36:461–480. doi: 10.1146/annurev.pa.36.040196.002333. [DOI] [PubMed] [Google Scholar]
  142. Sunahara R. K., Dessauer C. W., Whisnant R. E., Kleuss C., Gilman A. G. Interaction of Gsalpha with the cytosolic domains of mammalian adenylyl cyclase. J Biol Chem. 1997 Aug 29;272(35):22265–22271. doi: 10.1074/jbc.272.35.22265. [DOI] [PubMed] [Google Scholar]
  143. Tan C. M., Kelvin D. J., Litchfield D. W., Ferguson S. S., Feldman R. D. Tyrosine kinase-mediated serine phosphorylation of adenylyl cyclase. Biochemistry. 2001 Feb 13;40(6):1702–1709. doi: 10.1021/bi0015818. [DOI] [PubMed] [Google Scholar]
  144. Tang W. J., Hurley J. H. Catalytic mechanism and regulation of mammalian adenylyl cyclases. Mol Pharmacol. 1998 Aug;54(2):231–240. doi: 10.1124/mol.54.2.231. [DOI] [PubMed] [Google Scholar]
  145. Tang W. J., Yan S., Drum C. L. Class III adenylyl cyclases: regulation and underlying mechanisms. Adv Second Messenger Phosphoprotein Res. 1998;32:137–151. doi: 10.1016/s1040-7952(98)80009-8. [DOI] [PubMed] [Google Scholar]
  146. Tao Y. P., Najafi L., Shipley S., Howlett A., Klein C. Effects of nitric oxide on adenylyl cyclase stimulation in N18TG2 neuroblastoma cells. J Pharmacol Exp Ther. 1998 Jul;286(1):298–304. [PubMed] [Google Scholar]
  147. Taskén K. A., Collas P., Kemmner W. A., Witczak O., Conti M., Taskén K. Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area. J Biol Chem. 2001 Apr 2;276(25):21999–22002. doi: 10.1074/jbc.C000911200. [DOI] [PubMed] [Google Scholar]
  148. Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
  149. Taussig R., Quarmby L. M., Gilman A. G. Regulation of purified type I and type II adenylylcyclases by G protein beta gamma subunits. J Biol Chem. 1993 Jan 5;268(1):9–12. [PubMed] [Google Scholar]
  150. Taussig R., Tang W. J., Hepler J. R., Gilman A. G. Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem. 1994 Feb 25;269(8):6093–6100. [PubMed] [Google Scholar]
  151. Tesmer J. J., Sprang S. R. The structure, catalytic mechanism and regulation of adenylyl cyclase. Curr Opin Struct Biol. 1998 Dec;8(6):713–719. doi: 10.1016/s0959-440x(98)80090-0. [DOI] [PubMed] [Google Scholar]
  152. Tesmer J. J., Sunahara R. K., Gilman A. G., Sprang S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science. 1997 Dec 12;278(5345):1907–1916. doi: 10.1126/science.278.5345.1907. [DOI] [PubMed] [Google Scholar]
  153. Tesmer J. J., Sunahara R. K., Johnson R. A., Gosselin G., Gilman A. G., Sprang S. R. Two-metal-Ion catalysis in adenylyl cyclase. Science. 1999 Jul 30;285(5428):756–760. doi: 10.1126/science.285.5428.756. [DOI] [PubMed] [Google Scholar]
  154. Tian Y., Laychock S. G. Protein kinase C and calcium regulation of adenylyl cyclase in isolated rat pancreatic islets. Diabetes. 2001 Nov;50(11):2505–2513. doi: 10.2337/diabetes.50.11.2505. [DOI] [PubMed] [Google Scholar]
  155. Toya Y., Schwencke C., Couet J., Lisanti M. P., Ishikawa Y. Inhibition of adenylyl cyclase by caveolin peptides. Endocrinology. 1998 Apr;139(4):2025–2031. doi: 10.1210/endo.139.4.5957. [DOI] [PubMed] [Google Scholar]
  156. Trivedi B., Kramer R. H. Real-time patch-cram detection of intracellular cGMP reveals long-term suppression of responses to NO and muscarinic agonists. Neuron. 1998 Oct;21(4):895–906. doi: 10.1016/s0896-6273(00)80604-2. [DOI] [PubMed] [Google Scholar]
  157. Tsunoda S., Sierralta J., Sun Y., Bodner R., Suzuki E., Becker A., Socolich M., Zuker C. S. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature. 1997 Jul 17;388(6639):243–249. doi: 10.1038/40805. [DOI] [PubMed] [Google Scholar]
  158. Villacres E. C., Wu Z., Hua W., Nielsen M. D., Watters J. J., Yan C., Beavo J., Storm D. R. Developmentally expressed Ca(2+)-sensitive adenylyl cyclase activity is disrupted in the brains of type I adenylyl cyclase mutant mice. J Biol Chem. 1995 Jun 16;270(24):14352–14357. doi: 10.1074/jbc.270.24.14352. [DOI] [PubMed] [Google Scholar]
  159. Vorherr T., Knöpfel L., Hofmann F., Mollner S., Pfeuffer T., Carafoli E. The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase. Biochemistry. 1993 Jun 15;32(23):6081–6088. doi: 10.1021/bi00074a020. [DOI] [PubMed] [Google Scholar]
  160. Watson E. L., Jacobson K. L., Singh J. C., Idzerda R., Ott S. M., DiJulio D. H., Wong S. T., Storm D. R. The type 8 adenylyl cyclase is critical for Ca2+ stimulation of cAMP accumulation in mouse parotid acini. J Biol Chem. 2000 May 12;275(19):14691–14699. doi: 10.1074/jbc.275.19.14691. [DOI] [PubMed] [Google Scholar]
  161. Watson E. L., Wu Z., Jacobson K. L., Storm D. R., Singh J. C., Ott S. M. Capacitative Ca2+ entry is involved in cAMP synthesis in mouse parotid acini. Am J Physiol. 1998 Mar;274(3 Pt 1):C557–C565. doi: 10.1152/ajpcell.1998.274.3.C557. [DOI] [PubMed] [Google Scholar]
  162. Wayman G. A., Impey S., Storm D. R. Ca2+ inhibition of type III adenylyl cyclase in vivo. J Biol Chem. 1995 Sep 15;270(37):21480–21486. doi: 10.1074/jbc.270.37.21480. [DOI] [PubMed] [Google Scholar]
  163. Wayman G. A., Wei J., Wong S., Storm D. R. Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo. Mol Cell Biol. 1996 Nov;16(11):6075–6082. doi: 10.1128/mcb.16.11.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Wei J., Wayman G., Storm D. R. Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo. J Biol Chem. 1996 Sep 27;271(39):24231–24235. doi: 10.1074/jbc.271.39.24231. [DOI] [PubMed] [Google Scholar]
  165. Wong S. T., Athos J., Figueroa X. A., Pineda V. V., Schaefer M. L., Chavkin C. C., Muglia L. J., Storm D. R. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron. 1999 Aug;23(4):787–798. doi: 10.1016/s0896-6273(01)80036-2. [DOI] [PubMed] [Google Scholar]
  166. Wong S. T., Trinh K., Hacker B., Chan G. C., Lowe G., Gaggar A., Xia Z., Gold G. H., Storm D. R. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron. 2000 Sep;27(3):487–497. doi: 10.1016/s0896-6273(00)00060-x. [DOI] [PubMed] [Google Scholar]
  167. Wu Z. L., Thomas S. A., Villacres E. C., Xia Z., Simmons M. L., Chavkin C., Palmiter R. D., Storm D. R. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):220–224. doi: 10.1073/pnas.92.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Wu Z., Wong S. T., Storms D. R. Modification of the calcium and calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain. J Biol Chem. 1993 Nov 15;268(32):23766–23768. [PubMed] [Google Scholar]
  169. Xia Z., Storm D. R. Calmodulin-regulated adenylyl cyclases and neuromodulation. Curr Opin Neurobiol. 1997 Jun;7(3):391–396. doi: 10.1016/s0959-4388(97)80068-2. [DOI] [PubMed] [Google Scholar]
  170. Yoshimura M., Cooper D. M. Type-specific stimulation of adenylylcyclase by protein kinase C. J Biol Chem. 1993 Mar 5;268(7):4604–4607. [PubMed] [Google Scholar]
  171. Yoshimura M., Ikeda H., Tabakoff B. mu-Opioid receptors inhibit dopamine-stimulated activity of type V adenylyl cyclase but enhance dopamine-stimulated activity of type VII adenylyl cyclase. Mol Pharmacol. 1996 Jul;50(1):43–51. [PubMed] [Google Scholar]
  172. Yu H. J., Ma H., Green R. D. Calcium entry via L-type calcium channels acts as a negative regulator of adenylyl cyclase activity and cyclic AMP levels in cardiac myocytes. Mol Pharmacol. 1993 Oct;44(4):689–693. [PubMed] [Google Scholar]
  173. Zaccolo M., De Giorgi F., Cho C. Y., Feng L., Knapp T., Negulescu P. A., Taylor S. S., Tsien R. Y., Pozzan T. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol. 2000 Jan;2(1):25–29. doi: 10.1038/71345. [DOI] [PubMed] [Google Scholar]
  174. Zaccolo Manuela, Magalhães Paulo, Pozzan Tullio. Compartmentalisation of cAMP and Ca(2+) signals. Curr Opin Cell Biol. 2002 Apr;14(2):160–166. doi: 10.1016/s0955-0674(02)00316-2. [DOI] [PubMed] [Google Scholar]
  175. Zaccolo Manuela, Pozzan Tullio. CAMP and Ca2+ interplay: a matter of oscillation patterns. Trends Neurosci. 2003 Feb;26(2):53–55. doi: 10.1016/s0166-2236(02)00017-6. [DOI] [PubMed] [Google Scholar]
  176. Zhang G., Liu Y., Ruoho A. E., Hurley J. H. Structure of the adenylyl cyclase catalytic core. Nature. 1997 Mar 20;386(6622):247–253. doi: 10.1038/386247a0. [DOI] [PubMed] [Google Scholar]
  177. Zimmermann G., Zhou D., Taussig R. Mutations uncover a role for two magnesium ions in the catalytic mechanism of adenylyl cyclase. J Biol Chem. 1998 Jul 31;273(31):19650–19655. doi: 10.1074/jbc.273.31.19650. [DOI] [PubMed] [Google Scholar]
  178. van Deurs Bo, Roepstorff Kirstine, Hommelgaard Anette M., Sandvig Kirsten. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 2003 Feb;13(2):92–100. doi: 10.1016/s0962-8924(02)00039-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES