Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):503–515. doi: 10.1042/BJ20031076

Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling.

Sudha K Shenoy 1, Robert J Lefkowitz 1
PMCID: PMC1223736  PMID: 12959637

Abstract

Beta-arrestins are cytosolic proteins that bind to activated and phosphorylated G-protein-coupled receptors [7MSRs (seven-membrane-spanning receptors)] and uncouple them from G-protein-mediated second messenger signalling pathways. The binding of beta-arrestins to 7MSRs also leads to new signals via activation of MAPKs (mitogen-activated protein kinases) such as JNK3 (c-Jun N-terminal kinase 3), ERK1/2 (extracellular-signal-regulated kinase 1/2) and p38 MAPKs. By binding to endocytic proteins [clathrin, AP2 (adapter protein 2), NSF (N -ethylmaleimide-sensitive fusion protein) and ARF6 (ADP-ribosylation factor 6)], beta-arrestins also serve as adapters to link the receptors to the cellular trafficking machinery. Agonist-promoted ubiquitination of beta-arrestins is a prerequisite for their role in receptor internalization, as well as a determinant of the differing trafficking patterns of distinct classes of receptors. Recently, beta-arrestins have also been implicated as playing novel roles in cellular chemotaxis and apoptosis. By virtue of their ability to bind, in a stimulus-dependent fashion, to 7MSRs as well as to different classes of cellular proteins, beta-arrestins serve as versatile adapter proteins that regulate the signalling and trafficking of the receptors.

Full Text

The Full Text of this article is available as a PDF (325.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya Usha, Patel Shetal, Koundakjian Edmund, Nagashima Kunio, Han Xianlin, Acharya Jairaj K. Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science. 2003 Mar 14;299(5613):1740–1743. doi: 10.1126/science.1080549. [DOI] [PubMed] [Google Scholar]
  2. Ahn S., Maudsley S., Luttrell L. M., Lefkowitz R. J., Daaka Y. Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J Biol Chem. 1999 Jan 15;274(3):1185–1188. doi: 10.1074/jbc.274.3.1185. [DOI] [PubMed] [Google Scholar]
  3. Ahn Seungkirl, Nelson Christopher D., Garrison Tiffany Runyan, Miller William E., Lefkowitz Robert J. Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc Natl Acad Sci U S A. 2003 Feb 11;100(4):1740–1744. doi: 10.1073/pnas.262789099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alloway P. G., Howard L., Dolph P. J. The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron. 2000 Oct;28(1):129–138. doi: 10.1016/s0896-6273(00)00091-x. [DOI] [PubMed] [Google Scholar]
  5. Attramadal H., Arriza J. L., Aoki C., Dawson T. M., Codina J., Kwatra M. M., Snyder S. H., Caron M. G., Lefkowitz R. J. Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem. 1992 Sep 5;267(25):17882–17890. [PubMed] [Google Scholar]
  6. Barak L. S., Ferguson S. S., Zhang J., Caron M. G. A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem. 1997 Oct 31;272(44):27497–27500. doi: 10.1074/jbc.272.44.27497. [DOI] [PubMed] [Google Scholar]
  7. Barak L. S., Tiberi M., Freedman N. J., Kwatra M. M., Lefkowitz R. J., Caron M. G. A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J Biol Chem. 1994 Jan 28;269(4):2790–2795. [PubMed] [Google Scholar]
  8. Barak L. S., Warabi K., Feng X., Caron M. G., Kwatra M. M. Real-time visualization of the cellular redistribution of G protein-coupled receptor kinase 2 and beta-arrestin 2 during homologous desensitization of the substance P receptor. J Biol Chem. 1999 Mar 12;274(11):7565–7569. doi: 10.1074/jbc.274.11.7565. [DOI] [PubMed] [Google Scholar]
  9. Barlic J., Andrews J. D., Kelvin A. A., Bosinger S. E., DeVries M. E., Xu L., Dobransky T., Feldman R. D., Ferguson S. S., Kelvin D. J. Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat Immunol. 2000 Sep;1(3):227–233. doi: 10.1038/79767. [DOI] [PubMed] [Google Scholar]
  10. Benovic J. L., Kühn H., Weyand I., Codina J., Caron M. G., Lefkowitz R. J. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci U S A. 1987 Dec;84(24):8879–8882. doi: 10.1073/pnas.84.24.8879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Benovic J. L., Strasser R. H., Caron M. G., Lefkowitz R. J. Beta-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci U S A. 1986 May;83(9):2797–2801. doi: 10.1073/pnas.83.9.2797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bhattacharya Moshmi, Anborgh Pieter H., Babwah Andy V., Dale Lianne B., Dobransky Tomas, Benovic Jeffery L., Feldman Ross D., Verdi Joseph M., Rylett R. Jane, Ferguson Stephen S. G. Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization. Nat Cell Biol. 2002 Aug;4(8):547–555. doi: 10.1038/ncb821. [DOI] [PubMed] [Google Scholar]
  13. Bohn L. M., Gainetdinov R. R., Lin F. T., Lefkowitz R. J., Caron M. G. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature. 2000 Dec 7;408(6813):720–723. doi: 10.1038/35047086. [DOI] [PubMed] [Google Scholar]
  14. Bohn L. M., Lefkowitz R. J., Gainetdinov R. R., Peppel K., Caron M. G., Lin F. T. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 1999 Dec 24;286(5449):2495–2498. doi: 10.1126/science.286.5449.2495. [DOI] [PubMed] [Google Scholar]
  15. Carman C. V., Parent J. L., Day P. W., Pronin A. N., Sternweis P. M., Wedegaertner P. B., Gilman A. G., Benovic J. L., Kozasa T. Selective regulation of Galpha(q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. J Biol Chem. 1999 Nov 26;274(48):34483–34492. doi: 10.1074/jbc.274.48.34483. [DOI] [PubMed] [Google Scholar]
  16. Chen W., Hu L. A., Semenov M. V., Yanagawa S., Kikuchi A., Lefkowitz R. J., Miller W. E. beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc Natl Acad Sci U S A. 2001 Dec 11;98(26):14889–14894. doi: 10.1073/pnas.211572798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chen Wei, ten Berge Derk, Brown Jeff, Ahn Seungkirl, Hu Liaoyuan A., Miller William E., Caron Marc G., Barak Larry S., Nusse Roel, Lefkowitz Robert J. Dishevelled 2 recruits beta-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science. 2003 Sep 5;301(5638):1391–1394. doi: 10.1126/science.1082808. [DOI] [PubMed] [Google Scholar]
  18. Ciechanover A., Gonen H., Bercovich B., Cohen S., Fajerman I., Israël A., Mercurio F., Kahana C., Schwartz A. L., Iwai K. Mechanisms of ubiquitin-mediated, limited processing of the NF-kappaB1 precursor protein p105. Biochimie. 2001 Mar-Apr;83(3-4):341–349. doi: 10.1016/s0300-9084(01)01239-1. [DOI] [PubMed] [Google Scholar]
  19. Claing A., Chen W., Miller W. E., Vitale N., Moss J., Premont R. T., Lefkowitz R. J. beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem. 2001 Aug 30;276(45):42509–42513. doi: 10.1074/jbc.M108399200. [DOI] [PubMed] [Google Scholar]
  20. Claing Audrey, Laporte Stéphane A., Caron Marc G., Lefkowitz Robert J. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol. 2002 Feb;66(2):61–79. doi: 10.1016/s0301-0082(01)00023-5. [DOI] [PubMed] [Google Scholar]
  21. Cong M., Perry S. J., Lin F. T., Fraser I. D., Hu L. A., Chen W., Pitcher J. A., Scott J. D., Lefkowitz R. J. Regulation of membrane targeting of the G protein-coupled receptor kinase 2 by protein kinase A and its anchoring protein AKAP79. J Biol Chem. 2001 Jan 22;276(18):15192–15199. doi: 10.1074/jbc.M009130200. [DOI] [PubMed] [Google Scholar]
  22. Conner D. A., Mathier M. A., Mortensen R. M., Christe M., Vatner S. F., Seidman C. E., Seidman J. G. beta-Arrestin1 knockout mice appear normal but demonstrate altered cardiac responses to beta-adrenergic stimulation. Circ Res. 1997 Dec;81(6):1021–1026. doi: 10.1161/01.res.81.6.1021. [DOI] [PubMed] [Google Scholar]
  23. Craft C. M., Whitmore D. H., Wiechmann A. F. Cone arrestin identified by targeting expression of a functional family. J Biol Chem. 1994 Feb 11;269(6):4613–4619. [PubMed] [Google Scholar]
  24. Dalle Stéphane, Imamura Takeshi, Rose David W., Worrall Dorothy Sears, Ugi Satoshi, Hupfeld Christopher J., Olefsky Jerrold M. Insulin induces heterologous desensitization of G-protein-coupled receptor and insulin-like growth factor I signaling by downregulating beta-arrestin-1. Mol Cell Biol. 2002 Sep;22(17):6272–6285. doi: 10.1128/MCB.22.17.6272-6285.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. DeFea K. A., Vaughn Z. D., O'Bryan E. M., Nishijima D., Déry O., Bunnett N. W. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-dependent scaffolding complex. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11086–11091. doi: 10.1073/pnas.190276697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. DeFea K. A., Zalevsky J., Thoma M. S., Déry O., Mullins R. D., Bunnett N. W. beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol. 2000 Mar 20;148(6):1267–1281. doi: 10.1083/jcb.148.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dhami Gurpreet Kaur, Anborgh Pieter H., Dale Lianne B., Sterne-Marr Rachel, Ferguson Stephen S. G. Phosphorylation-independent regulation of metabotropic glutamate receptor signaling by G protein-coupled receptor kinase 2. J Biol Chem. 2002 May 6;277(28):25266–25272. doi: 10.1074/jbc.M203593200. [DOI] [PubMed] [Google Scholar]
  28. Dunn R., Hicke L. Domains of the Rsp5 ubiquitin-protein ligase required for receptor-mediated and fluid-phase endocytosis. Mol Biol Cell. 2001 Feb;12(2):421–435. doi: 10.1091/mbc.12.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Dunn R., Hicke L. Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis. J Biol Chem. 2001 May 16;276(28):25974–25981. doi: 10.1074/jbc.M104113200. [DOI] [PubMed] [Google Scholar]
  30. Elion E. A. The Ste5p scaffold. J Cell Sci. 2001 Nov;114(Pt 22):3967–3978. doi: 10.1242/jcs.114.22.3967. [DOI] [PubMed] [Google Scholar]
  31. Fang S., Jensen J. P., Ludwig R. L., Vousden K. H., Weissman A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000 Mar 24;275(12):8945–8951. doi: 10.1074/jbc.275.12.8945. [DOI] [PubMed] [Google Scholar]
  32. Ferguson S. S., Downey W. E., 3rd, Colapietro A. M., Barak L. S., Ménard L., Caron M. G. Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science. 1996 Jan 19;271(5247):363–366. doi: 10.1126/science.271.5247.363. [DOI] [PubMed] [Google Scholar]
  33. Fong Alan M., Premont Richard T., Richardson Ricardo M., Yu Yen-Rei A., Lefkowitz Robert J., Patel Dhavalkumar D. Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7478–7483. doi: 10.1073/pnas.112198299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Freedman N. J., Ament A. S., Oppermann M., Stoffel R. H., Exum S. T., Lefkowitz R. J. Phosphorylation and desensitization of human endothelin A and B receptors. Evidence for G protein-coupled receptor kinase specificity. J Biol Chem. 1997 Jul 11;272(28):17734–17743. doi: 10.1074/jbc.272.28.17734. [DOI] [PubMed] [Google Scholar]
  35. Gaidarov I., Krupnick J. G., Falck J. R., Benovic J. L., Keen J. H. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 1999 Feb 15;18(4):871–881. doi: 10.1093/emboj/18.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ge Lan, Ly Youly, Hollenberg Morley, DeFea Kathryn. A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem. 2003 Jun 23;278(36):34418–34426. doi: 10.1074/jbc.M300573200. [DOI] [PubMed] [Google Scholar]
  37. Goodman O. B., Jr, Krupnick J. G., Gurevich V. V., Benovic J. L., Keen J. H. Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J Biol Chem. 1997 Jun 6;272(23):15017–15022. doi: 10.1074/jbc.272.23.15017. [DOI] [PubMed] [Google Scholar]
  38. Goodman O. B., Jr, Krupnick J. G., Santini F., Gurevich V. V., Penn R. B., Gagnon A. W., Keen J. H., Benovic J. L. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature. 1996 Oct 3;383(6599):447–450. doi: 10.1038/383447a0. [DOI] [PubMed] [Google Scholar]
  39. Gurevich V. V., Dion S. B., Onorato J. J., Ptasienski J., Kim C. M., Sterne-Marr R., Hosey M. M., Benovic J. L. Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem. 1995 Jan 13;270(2):720–731. doi: 10.1074/jbc.270.2.720. [DOI] [PubMed] [Google Scholar]
  40. Gurevich V. V., Richardson R. M., Kim C. M., Hosey M. M., Benovic J. L. Binding of wild type and chimeric arrestins to the m2 muscarinic cholinergic receptor. J Biol Chem. 1993 Aug 15;268(23):16879–16882. [PubMed] [Google Scholar]
  41. Hartmann-Petersen Rasmus, Seeger Michael, Gordon Colin. Transferring substrates to the 26S proteasome. Trends Biochem Sci. 2003 Jan;28(1):26–31. doi: 10.1016/s0968-0004(02)00002-6. [DOI] [PubMed] [Google Scholar]
  42. Hausdorff W. P., Campbell P. T., Ostrowski J., Yu S. S., Caron M. G., Lefkowitz R. J. A small region of the beta-adrenergic receptor is selectively involved in its rapid regulation. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):2979–2983. doi: 10.1073/pnas.88.8.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hershko A., Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. doi: 10.1146/annurev.biochem.67.1.425. [DOI] [PubMed] [Google Scholar]
  44. Hicke L., Zanolari B., Riezman H. Cytoplasmic tail phosphorylation of the alpha-factor receptor is required for its ubiquitination and internalization. J Cell Biol. 1998 Apr 20;141(2):349–358. doi: 10.1083/jcb.141.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet. 1996;30:405–439. doi: 10.1146/annurev.genet.30.1.405. [DOI] [PubMed] [Google Scholar]
  46. Honda R., Tanaka H., Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997 Dec 22;420(1):25–27. doi: 10.1016/s0014-5793(97)01480-4. [DOI] [PubMed] [Google Scholar]
  47. Hupfeld Christopher J., Dalle Stephane, Olefsky Jerrold M. Beta -Arrestin 1 down-regulation after insulin treatment is associated with supersensitization of beta 2 adrenergic receptor Galpha s signaling in 3T3-L1 adipocytes. Proc Natl Acad Sci U S A. 2002 Dec 30;100(1):161–166. doi: 10.1073/pnas.0235674100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Imamura T., Huang J., Dalle S., Ugi S., Usui I., Luttrell L. M., Miller W. E., Lefkowitz R. J., Olefsky J. M. beta -Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J Biol Chem. 2001 Sep 6;276(47):43663–43667. doi: 10.1074/jbc.M105364200. [DOI] [PubMed] [Google Scholar]
  49. Ito M., Yoshioka K., Akechi M., Yamashita S., Takamatsu N., Sugiyama K., Hibi M., Nakabeppu Y., Shiba T., Yamamoto K. I. JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol Cell Biol. 1999 Nov;19(11):7539–7548. doi: 10.1128/mcb.19.11.7539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Katzmann David J., Odorizzi Greg, Emr Scott D. Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol. 2002 Dec;3(12):893–905. doi: 10.1038/nrm973. [DOI] [PubMed] [Google Scholar]
  51. Kim You-Me, Barak Larry S., Caron Marc G., Benovic Jeffrey L. Regulation of arrestin-3 phosphorylation by casein kinase II. J Biol Chem. 2002 Mar 4;277(19):16837–16846. doi: 10.1074/jbc.M201379200. [DOI] [PubMed] [Google Scholar]
  52. Kiselev A., Socolich M., Vinós J., Hardy R. W., Zuker C. S., Ranganathan R. A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron. 2000 Oct;28(1):139–152. doi: 10.1016/s0896-6273(00)00092-1. [DOI] [PubMed] [Google Scholar]
  53. Kohout T. A., Lin F. S., Perry S. J., Conner D. A., Lefkowitz R. J. beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci U S A. 2001 Feb 6;98(4):1601–1606. doi: 10.1073/pnas.041608198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kovoor A., Celver J., Abdryashitov R. I., Chavkin C., Gurevich V. V. Targeted construction of phosphorylation-independent beta-arrestin mutants with constitutive activity in cells. J Biol Chem. 1999 Mar 12;274(11):6831–6834. doi: 10.1074/jbc.274.11.6831. [DOI] [PubMed] [Google Scholar]
  55. Krupnick J. G., Goodman O. B., Jr, Keen J. H., Benovic J. L. Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J Biol Chem. 1997 Jun 6;272(23):15011–15016. doi: 10.1074/jbc.272.23.15011. [DOI] [PubMed] [Google Scholar]
  56. Laporte S. A., Oakley R. H., Holt J. A., Barak L. S., Caron M. G. The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem. 2000 Jul 28;275(30):23120–23126. doi: 10.1074/jbc.M002581200. [DOI] [PubMed] [Google Scholar]
  57. Laporte S. A., Oakley R. H., Zhang J., Holt J. A., Ferguson S. S., Caron M. G., Barak L. S. The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3712–3717. doi: 10.1073/pnas.96.7.3712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Lefkowitz R. J. G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem. 1998 Jul 24;273(30):18677–18680. doi: 10.1074/jbc.273.30.18677. [DOI] [PubMed] [Google Scholar]
  59. Lefkowitz R. J., Pitcher J., Krueger K., Daaka Y. Mechanisms of beta-adrenergic receptor desensitization and resensitization. Adv Pharmacol. 1998;42:416–420. doi: 10.1016/s1054-3589(08)60777-2. [DOI] [PubMed] [Google Scholar]
  60. Lin F. T., Daaka Y., Lefkowitz R. J. beta-arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulin-like growth factor I receptor. J Biol Chem. 1998 Nov 27;273(48):31640–31643. doi: 10.1074/jbc.273.48.31640. [DOI] [PubMed] [Google Scholar]
  61. Lin F. T., Krueger K. M., Kendall H. E., Daaka Y., Fredericks Z. L., Pitcher J. A., Lefkowitz R. J. Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. J Biol Chem. 1997 Dec 5;272(49):31051–31057. doi: 10.1074/jbc.272.49.31051. [DOI] [PubMed] [Google Scholar]
  62. Lin F. T., Miller W. E., Luttrell L. M., Lefkowitz R. J. Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases. J Biol Chem. 1999 Jun 4;274(23):15971–15974. doi: 10.1074/jbc.274.23.15971. [DOI] [PubMed] [Google Scholar]
  63. Lin Fang-Tsyr, Chen Wei, Shenoy Sudha, Cong Mei, Exum Sabrina T., Lefkowitz Robert J. Phosphorylation of beta-arrestin2 regulates its function in internalization of beta(2)-adrenergic receptors. Biochemistry. 2002 Aug 27;41(34):10692–10699. doi: 10.1021/bi025705n. [DOI] [PubMed] [Google Scholar]
  64. Lodowski David T., Pitcher Julie A., Capel W. Darrell, Lefkowitz Robert J., Tesmer John J. G. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science. 2003 May 23;300(5623):1256–1262. doi: 10.1126/science.1082348. [DOI] [PubMed] [Google Scholar]
  65. Lohse M. J., Andexinger S., Pitcher J., Trukawinski S., Codina J., Faure J. P., Caron M. G., Lefkowitz R. J. Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem. 1992 Apr 25;267(12):8558–8564. [PubMed] [Google Scholar]
  66. Lohse M. J., Benovic J. L., Codina J., Caron M. G., Lefkowitz R. J. beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science. 1990 Jun 22;248(4962):1547–1550. doi: 10.1126/science.2163110. [DOI] [PubMed] [Google Scholar]
  67. Luttrell L. M., Daaka Y., Lefkowitz R. J. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol. 1999 Apr;11(2):177–183. doi: 10.1016/s0955-0674(99)80023-4. [DOI] [PubMed] [Google Scholar]
  68. Luttrell L. M., Ferguson S. S., Daaka Y., Miller W. E., Maudsley S., Della Rocca G. J., Lin F., Kawakatsu H., Owada K., Luttrell D. K. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science. 1999 Jan 29;283(5402):655–661. doi: 10.1126/science.283.5402.655. [DOI] [PubMed] [Google Scholar]
  69. Luttrell L. M., Roudabush F. L., Choy E. W., Miller W. E., Field M. E., Pierce K. L., Lefkowitz R. J. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2449–2454. doi: 10.1073/pnas.041604898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Mahanty S. K., Wang Y., Farley F. W., Elion E. A. Nuclear shuttling of yeast scaffold Ste5 is required for its recruitment to the plasma membrane and activation of the mating MAPK cascade. Cell. 1999 Aug 20;98(4):501–512. doi: 10.1016/s0092-8674(00)81978-9. [DOI] [PubMed] [Google Scholar]
  71. Maller J. L., Schwab M. S., Roberts B. T., Gross S. D., Taieb F. E., Tunquist B. J. The pathway of MAP kinase mediation of CSF arrest in Xenopus oocytes. Biol Cell. 2001 Sep;93(1-2):27–33. doi: 10.1016/s0248-4900(01)01127-3. [DOI] [PubMed] [Google Scholar]
  72. Marchese A., Benovic J. L. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem. 2001 Dec 7;276(49):45509–45512. doi: 10.1074/jbc.C100527200. [DOI] [PubMed] [Google Scholar]
  73. McDonald P. H., Chow C. W., Miller W. E., Laporte S. A., Field M. E., Lin F. T., Davis R. J., Lefkowitz R. J. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science. 2000 Nov 24;290(5496):1574–1577. doi: 10.1126/science.290.5496.1574. [DOI] [PubMed] [Google Scholar]
  74. McDonald P. H., Cote N. L., Lin F. T., Premont R. T., Pitcher J. A., Lefkowitz R. J. Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation. J Biol Chem. 1999 Apr 16;274(16):10677–10680. doi: 10.1074/jbc.274.16.10677. [DOI] [PubMed] [Google Scholar]
  75. Miller W. E., Maudsley S., Ahn S., Khan K. D., Luttrell L. M., Lefkowitz R. J. beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J Biol Chem. 2000 Apr 14;275(15):11312–11319. doi: 10.1074/jbc.275.15.11312. [DOI] [PubMed] [Google Scholar]
  76. Miller William E., Houtz Daniel A., Nelson Christopher D., Kolattukudy P. E., Lefkowitz Robert J. G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR. J Biol Chem. 2003 Mar 31;278(24):21663–21671. doi: 10.1074/jbc.M303219200. [DOI] [PubMed] [Google Scholar]
  77. Min Le, Galet Colette, Ascoli Mario. The association of arrestin-3 with the human lutropin/choriogonadotropin receptor depends mostly on receptor activation rather than on receptor phosphorylation. J Biol Chem. 2001 Nov 5;277(1):702–710. doi: 10.1074/jbc.M106082200. [DOI] [PubMed] [Google Scholar]
  78. Mukherjee S., Palczewski K., Gurevich V., Benovic J. L., Banga J. P., Hunzicker-Dunn M. A direct role for arrestins in desensitization of the luteinizing hormone/choriogonadotropin receptor in porcine ovarian follicular membranes. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):493–498. doi: 10.1073/pnas.96.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Mundell S. J., Loudon R. P., Benovic J. L. Characterization of G protein-coupled receptor regulation in antisense mRNA-expressing cells with reduced arrestin levels. Biochemistry. 1999 Jul 6;38(27):8723–8732. doi: 10.1021/bi990361v. [DOI] [PubMed] [Google Scholar]
  80. Ménard L., Ferguson S. S., Barak L. S., Bertrand L., Premont R. T., Colapietro A. M., Lefkowitz R. J., Caron M. G. Members of the G protein-coupled receptor kinase family that phosphorylate the beta2-adrenergic receptor facilitate sequestration. Biochemistry. 1996 Apr 2;35(13):4155–4160. doi: 10.1021/bi952961+. [DOI] [PubMed] [Google Scholar]
  81. Oakley R. H., Laporte S. A., Holt J. A., Barak L. S., Caron M. G. Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem. 1999 Nov 5;274(45):32248–32257. doi: 10.1074/jbc.274.45.32248. [DOI] [PubMed] [Google Scholar]
  82. Oakley R. H., Laporte S. A., Holt J. A., Barak L. S., Caron M. G. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis*. J Biol Chem. 2001 Mar 9;276(22):19452–19460. doi: 10.1074/jbc.M101450200. [DOI] [PubMed] [Google Scholar]
  83. Oakley R. H., Laporte S. A., Holt J. A., Caron M. G., Barak L. S. Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem. 2000 Jun 2;275(22):17201–17210. doi: 10.1074/jbc.M910348199. [DOI] [PubMed] [Google Scholar]
  84. Ogier-Denis E., Pattingre S., El Benna J., Codogno P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem. 2000 Dec 15;275(50):39090–39095. doi: 10.1074/jbc.M006198200. [DOI] [PubMed] [Google Scholar]
  85. Orian A., Schwartz A. L., Israël A., Whiteside S., Kahana C., Ciechanover A. Structural motifs involved in ubiquitin-mediated processing of the NF-kappaB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol Cell Biol. 1999 May;19(5):3664–3673. doi: 10.1128/mcb.19.5.3664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Paing May M., Stutts Amy B., Kohout Trudy A., Lefkowitz Robert J., Trejo JoAnn. beta -Arrestins regulate protease-activated receptor-1 desensitization but not internalization or Down-regulation. J Biol Chem. 2001 Nov 2;277(2):1292–1300. doi: 10.1074/jbc.M109160200. [DOI] [PubMed] [Google Scholar]
  87. Pals-Rylaarsdam R., Gurevich V. V., Lee K. B., Ptasienski J. A., Benovic J. L., Hosey M. M. Internalization of the m2 muscarinic acetylcholine receptor. Arrestin-independent and -dependent pathways. J Biol Chem. 1997 Sep 19;272(38):23682–23689. doi: 10.1074/jbc.272.38.23682. [DOI] [PubMed] [Google Scholar]
  88. Parent C. A., Devreotes P. N. A cell's sense of direction. Science. 1999 Apr 30;284(5415):765–770. doi: 10.1126/science.284.5415.765. [DOI] [PubMed] [Google Scholar]
  89. Perry Stephen J., Baillie George S., Kohout Trudy A., McPhee Ian, Magiera Maria M., Ang Kok Long, Miller William E., McLean Alison J., Conti Marco, Houslay Miles D. Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science. 2002 Oct 25;298(5594):834–836. doi: 10.1126/science.1074683. [DOI] [PubMed] [Google Scholar]
  90. Pierce Kristen L., Premont Richard T., Lefkowitz Robert J. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002 Sep;3(9):639–650. doi: 10.1038/nrm908. [DOI] [PubMed] [Google Scholar]
  91. Pitcher J. A., Fredericks Z. L., Stone W. C., Premont R. T., Stoffel R. H., Koch W. J., Lefkowitz R. J. Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity. Location, structure, and regulation of the PIP2 binding site distinguishes the GRK subfamilies. J Biol Chem. 1996 Oct 4;271(40):24907–24913. doi: 10.1074/jbc.271.40.24907. [DOI] [PubMed] [Google Scholar]
  92. Pitcher J. A., Freedman N. J., Lefkowitz R. J. G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–692. doi: 10.1146/annurev.biochem.67.1.653. [DOI] [PubMed] [Google Scholar]
  93. Pitcher J. A., Inglese J., Higgins J. B., Arriza J. L., Casey P. J., Kim C., Benovic J. L., Kwatra M. M., Caron M. G., Lefkowitz R. J. Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science. 1992 Aug 28;257(5074):1264–1267. doi: 10.1126/science.1325672. [DOI] [PubMed] [Google Scholar]
  94. Pitcher J. A., Tesmer J. J., Freeman J. L., Capel W. D., Stone W. C., Lefkowitz R. J. Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J Biol Chem. 1999 Dec 3;274(49):34531–34534. doi: 10.1074/jbc.274.49.34531. [DOI] [PubMed] [Google Scholar]
  95. Qian H., Pipolo L., Thomas W. G. Association of beta-Arrestin 1 with the type 1A angiotensin II receptor involves phosphorylation of the receptor carboxyl terminus and correlates with receptor internalization. Mol Endocrinol. 2001 Oct;15(10):1706–1719. doi: 10.1210/mend.15.10.0714. [DOI] [PubMed] [Google Scholar]
  96. Ranganathan Rama. Cell biology. A matter of life or death. Science. 2003 Mar 14;299(5613):1677–1679. doi: 10.1126/science.1082509. [DOI] [PubMed] [Google Scholar]
  97. Roth A. F., Davis N. G. Ubiquitination of the PEST-like endocytosis signal of the yeast a-factor receptor. J Biol Chem. 2000 Mar 17;275(11):8143–8153. doi: 10.1074/jbc.275.11.8143. [DOI] [PubMed] [Google Scholar]
  98. Rubin D. M., Finley D. Proteolysis. The proteasome: a protein-degrading organelle? Curr Biol. 1995 Aug 1;5(8):854–858. doi: 10.1016/s0960-9822(95)00172-2. [DOI] [PubMed] [Google Scholar]
  99. Scott Mark G. H., Le Rouzic Erwann, Périanin Axel, Pierotti Vincenzo, Enslen Hervé, Benichou Serge, Marullo Stefano, Benmerah Alexandre. Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem. 2002 Aug 6;277(40):37693–37701. doi: 10.1074/jbc.M207552200. [DOI] [PubMed] [Google Scholar]
  100. Shenoy S. K., McDonald P. H., Kohout T. A., Lefkowitz R. J. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science. 2001 Oct 4;294(5545):1307–1313. doi: 10.1126/science.1063866. [DOI] [PubMed] [Google Scholar]
  101. Shenoy Sudha K., Lefkowitz Robert J. Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem. 2003 Feb 6;278(16):14498–14506. doi: 10.1074/jbc.M209626200. [DOI] [PubMed] [Google Scholar]
  102. Sibley D. R., Peters J. R., Nambi P., Caron M. G., Lefkowitz R. J. Desensitization of turkey erythrocyte adenylate cyclase. Beta-adrenergic receptor phosphorylation is correlated with attenuation of adenylate cyclase activity. J Biol Chem. 1984 Aug 10;259(15):9742–9749. [PubMed] [Google Scholar]
  103. Stadel J. M., Nambi P., Shorr R. G., Sawyer D. F., Caron M. G., Lefkowitz R. J. Phosphorylation of the beta-adrenergic receptor accompanies catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase. Trans Assoc Am Physicians. 1983;96:137–145. [PubMed] [Google Scholar]
  104. Stoffel R. H., Inglese J., Macrae A. D., Lefkowitz R. J., Premont R. T. Palmitoylation increases the kinase activity of the G protein-coupled receptor kinase, GRK6. Biochemistry. 1998 Nov 17;37(46):16053–16059. doi: 10.1021/bi981432d. [DOI] [PubMed] [Google Scholar]
  105. Stoffel R. H., Randall R. R., Premont R. T., Lefkowitz R. J., Inglese J. Palmitoylation of G protein-coupled receptor kinase, GRK6. Lipid modification diversity in the GRK family. J Biol Chem. 1994 Nov 11;269(45):27791–27794. [PubMed] [Google Scholar]
  106. Sun Yue, Cheng Zhijie, Ma Lan, Pei Gang. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem. 2002 Oct 4;277(51):49212–49219. doi: 10.1074/jbc.M207294200. [DOI] [PubMed] [Google Scholar]
  107. Terrell J., Shih S., Dunn R., Hicke L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell. 1998 Jan;1(2):193–202. doi: 10.1016/s1097-2765(00)80020-9. [DOI] [PubMed] [Google Scholar]
  108. Tohgo Akira, Choy Eric W., Gesty-Palmer Diane, Pierce Kristen L., Laporte Stephane, Oakley Robert H., Caron Marc G., Lefkowitz Robert J., Luttrell Louis M. The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem. 2002 Dec 6;278(8):6258–6267. doi: 10.1074/jbc.M212231200. [DOI] [PubMed] [Google Scholar]
  109. Tohgo Akira, Pierce Kristen L., Choy Eric W., Lefkowitz Robert J., Luttrell Louis M. beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem. 2002 Jan 2;277(11):9429–9436. doi: 10.1074/jbc.M106457200. [DOI] [PubMed] [Google Scholar]
  110. Vishnivetskiy S. A., Paz C. L., Schubert C., Hirsch J. A., Sigler P. B., Gurevich V. V. How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem. 1999 Apr 23;274(17):11451–11454. doi: 10.1074/jbc.274.17.11451. [DOI] [PubMed] [Google Scholar]
  111. Wang Ping, Gao Hua, Ni Yanxiang, Wang Beibei, Wu Yalan, Ji Lili, Qin Linhua, Ma Lan, Pei Gang. Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem. 2002 Dec 17;278(8):6363–6370. doi: 10.1074/jbc.M210350200. [DOI] [PubMed] [Google Scholar]
  112. Wang Ping, Wu Yalan, Ge Xin, Ma Lan, Pei Gang. Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem. 2003 Jan 21;278(13):11648–11653. doi: 10.1074/jbc.M208109200. [DOI] [PubMed] [Google Scholar]
  113. Yasuda J., Whitmarsh A. J., Cavanagh J., Sharma M., Davis R. J. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol. 1999 Oct;19(10):7245–7254. doi: 10.1128/mcb.19.10.7245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. von Zastrow M., Kobilka B. K. Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J Biol Chem. 1992 Feb 15;267(5):3530–3538. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES