Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 15;376(Pt 1):61–69. doi: 10.1042/BJ20030591

Lgl1, a mesenchymal modulator of early lung branching morphogenesis, is a secreted glycoprotein imported by late gestation lung epithelial cells.

Lami Oyewumi 1, Feige Kaplan 1, Neil B Sweezey 1
PMCID: PMC1223741  PMID: 12880386

Abstract

Secreted glycoproteins serve a variety of functions related to cell-cell communication in developmental systems. We cloned LGL1, a novel glucocorticoid-inducible gene in foetal lung, and described its temporal and spatial localization in the rat. Disruption of foetal mesenchyme-specific LGL1 expression using antisense oligodeoxynucleotides, which was associated with a 50% decrease in lgl1 protein levels, inhibited airway epithelial branching in foetal rat gestational day 13 lung buds in explant culture. These findings suggested that lgl1 functions as a secreted signalling molecule. We now provide evidence supporting a role for lgl1 in mesenchymal-epithelial interactions that govern lung organogenesis. Lgl1 is a secreted glycoprotein with a conserved N-terminal secretory signal peptide. Using dual immunofluorescence, intracellular lgl1 was found to co-localize with markers of the Golgi apparatus and endoplasmic reticulum, consistent with its association with secretory vesicles. Using pulse-chase studies, we show that lgl1 is a stable protein with a half-life of 11.5 h. Furthermore, at gestational days 20 and 21 (term=22), foetal distal lung epithelial cells import lgl1 protein. Taken together, our findings support distinct roles for lgl1 as a mediator of glucocorticoid-induced mesenchymal-epithelial interactions in early and late foetal lung organogenesis.

Full Text

The Full Text of this article is available as a PDF (255.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellusci S., Grindley J., Emoto H., Itoh N., Hogan B. L. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development. 1997 Dec;124(23):4867–4878. doi: 10.1242/dev.124.23.4867. [DOI] [PubMed] [Google Scholar]
  2. Boström H., Willetts K., Pekny M., Levéen P., Lindahl P., Hedstrand H., Pekna M., Hellström M., Gebre-Medhin S., Schalling M. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell. 1996 Jun 14;85(6):863–873. doi: 10.1016/s0092-8674(00)81270-2. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen W. T., Chen J. M., Mueller S. C. Coupled expression and colocalization of 140K cell adhesion molecules, fibronectin, and laminin during morphogenesis and cytodifferentiation of chick lung cells. J Cell Biol. 1986 Sep;103(3):1073–1090. doi: 10.1083/jcb.103.3.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hilfer S. R., Rayner R. M., Brown J. W. Mesenchymal control of branching pattern in the fetal mouse lung. Tissue Cell. 1985;17(4):523–538. doi: 10.1016/0040-8166(85)90029-1. [DOI] [PubMed] [Google Scholar]
  7. Jaskoll T., Choy H. A., Melnick M. The glucocorticoid-glucocorticoid receptor signal transduction pathway, transforming growth factor-beta, and embryonic mouse lung development in vivo. Pediatr Res. 1996 May;39(5):749–759. doi: 10.1203/00006450-199605000-00002. [DOI] [PubMed] [Google Scholar]
  8. Kaplan F., Ledoux P., Kassamali F. Q., Gagnon S., Post M., Koehler D., Deimling J., Sweezey N. B. A novel developmentally regulated gene in lung mesenchyme: homology to a tumor-derived trypsin inhibitor. Am J Physiol. 1999 Jun;276(6 Pt 1):L1027–L1036. doi: 10.1152/ajplung.1999.276.6.L1027. [DOI] [PubMed] [Google Scholar]
  9. Lindahl P., Karlsson L., Hellström M., Gebre-Medhin S., Willetts K., Heath J. K., Betsholtz C. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development. 1997 Oct;124(20):3943–3953. doi: 10.1242/dev.124.20.3943. [DOI] [PubMed] [Google Scholar]
  10. Linstedt A. D., Hauri H. P. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol Biol Cell. 1993 Jul;4(7):679–693. doi: 10.1091/mbc.4.7.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maeda T., Nishida J., Nakanishi Y. Expression pattern, subcellular localization and structure--function relationship of rat Tpx-1, a spermatogenic cell adhesion molecule responsible for association with Sertoli cells. Dev Growth Differ. 1999 Dec;41(6):715–722. doi: 10.1046/j.1440-169x.1999.00470.x. [DOI] [PubMed] [Google Scholar]
  12. Masters J. R. Epithelial-mesenchymal interaction during lung development: the effect of mesenchymal mass. Dev Biol. 1976 Jul 1;51(1):98–108. doi: 10.1016/0012-1606(76)90125-1. [DOI] [PubMed] [Google Scholar]
  13. Millan F. A., Denhez F., Kondaiah P., Akhurst R. J. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development. 1991 Jan;111(1):131–143. doi: 10.1242/dev.111.1.131. [DOI] [PubMed] [Google Scholar]
  14. Minoo P., King R. J. Epithelial-mesenchymal interactions in lung development. Annu Rev Physiol. 1994;56:13–45. doi: 10.1146/annurev.ph.56.030194.000305. [DOI] [PubMed] [Google Scholar]
  15. Muglia L. J., Bae D. S., Brown T. T., Vogt S. K., Alvarez J. G., Sunday M. E., Majzoub J. A. Proliferation and differentiation defects during lung development in corticotropin-releasing hormone-deficient mice. Am J Respir Cell Mol Biol. 1999 Feb;20(2):181–188. doi: 10.1165/ajrcmb.20.2.3381. [DOI] [PubMed] [Google Scholar]
  16. Oshika E., Liu S., Ung L. P., Singh G., Shinozuka H., Michalopoulos G. K., Katyal S. L. Glucocorticoid-induced effects on pattern formation and epithelial cell differentiation in early embryonic rat lungs. Pediatr Res. 1998 Mar;43(3):305–314. doi: 10.1203/00006450-199803000-00001. [DOI] [PubMed] [Google Scholar]
  17. Oyewumi Lami, Kaplan Feige, Gagnon Stéphane, Sweezey Neil B. Antisense oligodeoxynucleotides decrease LGL1 mRNA and protein levels and inhibit branching morphogenesis in fetal rat lung. Am J Respir Cell Mol Biol. 2003 Feb;28(2):232–240. doi: 10.1165/rcmb.4877. [DOI] [PubMed] [Google Scholar]
  18. Roman J. Fibronectin and fibronectin receptors in lung development. Exp Lung Res. 1997 Mar-Apr;23(2):147–159. doi: 10.3109/01902149709074027. [DOI] [PubMed] [Google Scholar]
  19. Rubin L. P., Kifor O., Hua J., Brown E. M., Torday J. S. Parathyroid hormone (PTH) and PTH-related protein stimulate surfactant phospholipid synthesis in rat fetal lung, apparently by a mesenchymal-epithelial mechanism. Biochim Biophys Acta. 1994 Aug 11;1223(1):91–100. doi: 10.1016/0167-4889(94)90077-9. [DOI] [PubMed] [Google Scholar]
  20. Schreiber M. C., Karlo J. C., Kovalick G. E. A novel cDNA from Drosophila encoding a protein with similarity to mammalian cysteine-rich secretory proteins, wasp venom antigen 5, and plant group 1 pathogenesis-related proteins. Gene. 1997 Jun 3;191(2):135–141. doi: 10.1016/s0378-1119(97)00010-3. [DOI] [PubMed] [Google Scholar]
  21. Shannon J. M. Induction of alveolar type II cell differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Dev Biol. 1994 Dec;166(2):600–614. doi: 10.1006/dbio.1994.1340. [DOI] [PubMed] [Google Scholar]
  22. Shannon J. M., Nielsen L. D., Gebb S. A., Randell S. H. Mesenchyme specifies epithelial differentiation in reciprocal recombinants of embryonic lung and trachea. Dev Dyn. 1998 Aug;212(4):482–494. doi: 10.1002/(SICI)1097-0177(199808)212:4<482::AID-AJA2>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  23. Smith B. T., Post M. Fibroblast-pneumonocyte factor. Am J Physiol. 1989 Oct;257(4 Pt 1):L174–L178. doi: 10.1152/ajplung.1989.257.4.L174. [DOI] [PubMed] [Google Scholar]
  24. Smith B. T., Sabry K. Glucocorticoid-thyroid synergism in lung maturation: a mechanism involving epithelial-mesenchymal interaction. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1951–1954. doi: 10.1073/pnas.80.7.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith D. M., Collins-Racie L. A., Marigo V. A., Roberts D. J., Davis N. M., Hartmann C., Schweitzer R., LaVallie E. R., Gamer L., McCoy J. Cloning and expression of a novel cysteine-rich secreted protein family member expressed in thyroid and pancreatic mesoderm within the chicken embryo. Mech Dev. 2001 Apr;102(1-2):223–226. doi: 10.1016/s0925-4773(01)00293-3. [DOI] [PubMed] [Google Scholar]
  26. Souza P., Kuliszewski M., Wang J., Tseu I., Tanswell A. K., Post M. PDGF-AA and its receptor influence early lung branching via an epithelial-mesenchymal interaction. Development. 1995 Aug;121(8):2559–2567. doi: 10.1242/dev.121.8.2559. [DOI] [PubMed] [Google Scholar]
  27. Souza P., Sedlackova L., Kuliszewski M., Wang J., Liu J., Tseu I., Liu M., Tanswell A. K., Post M. Antisense oligodeoxynucleotides targeting PDGF-B mRNA inhibit cell proliferation during embryonic rat lung development. Development. 1994 Aug;120(8):2163–2173. doi: 10.1242/dev.120.8.2163. [DOI] [PubMed] [Google Scholar]
  28. Souza P., Tanswell A. K., Post M. Different roles for PDGF-alpha and -beta receptors in embryonic lung development. Am J Respir Cell Mol Biol. 1996 Oct;15(4):551–562. doi: 10.1165/ajrcmb.15.4.8879189. [DOI] [PubMed] [Google Scholar]
  29. Spooner B. S., Thompson-Pletscher H. A., Stokes B., Bassett K. E. Extracellular matrix involvement in epithelial branching morphogenesis. Dev Biol (N Y 1985) 1986;3:225–260. doi: 10.1007/978-1-4684-5050-7_12. [DOI] [PubMed] [Google Scholar]
  30. Torday J. S., Sun H., Wang L., Torres E., Sunday M. E., Rubin L. P. Leptin mediates the parathyroid hormone-related protein paracrine stimulation of fetal lung maturation. Am J Physiol Lung Cell Mol Physiol. 2002 Mar;282(3):L405–L410. doi: 10.1152/ajplung.2002.282.3.L405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang J., Kuliszewski M., Yee W., Sedlackova L., Xu J., Tseu I., Post M. Cloning and expression of glucocorticoid-induced genes in fetal rat lung fibroblasts. Transforming growth factor-beta 3. J Biol Chem. 1995 Feb 10;270(6):2722–2728. doi: 10.1074/jbc.270.6.2722. [DOI] [PubMed] [Google Scholar]
  32. Weinstein M., Xu X., Ohyama K., Deng C. X. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development. 1998 Sep;125(18):3615–3623. doi: 10.1242/dev.125.18.3615. [DOI] [PubMed] [Google Scholar]
  33. Yamakawa T., Miyata S., Ogawa N., Koshikawa N., Yasumitsu H., Kanamori T., Miyazaki K. cDNA cloning of a novel trypsin inhibitor with similarity to pathogenesis-related proteins, and its frequent expression in human brain cancer cells. Biochim Biophys Acta. 1998 Jan 21;1395(2):202–208. doi: 10.1016/s0167-4781(97)00149-8. [DOI] [PubMed] [Google Scholar]
  34. Zhao Y. Tenascin is expressed in the mesenchyme of the embryonic lung and down-regulated by dexamethasone in early organogenesis. Biochem Biophys Res Commun. 1999 Oct 5;263(3):597–602. doi: 10.1006/bbrc.1999.1429. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES