Abstract
The L3 loop is an important feature of the OmpF porin structure, contributing to both channel size and electrostatic properties. Colicins A and N, spermine, and antibiotics that use OmpF to penetrate the cell, were used to investigate the structure-function relationships of L3. Spermine was found to protect efficiently cells expressing wild-type OmpF from colicin action. Among other solutes, sugars had minor effects on colicin A activity, whereas competitions between colicin A and antibiotic fluxes were observed. Among the antibiotics tested, cefepime appeared the most efficient. Escherichia coli cells expressing various OmpF proteins mutated in the eyelet were tested for their susceptibility to colicin A, and resistant strains were found only among L3 mutants. Mutations at residues 119 and 120 were the most effective at conferring resistance to colicin A, probably due to epitope structure alteration, as revealed by a specific antipeptide. More detailed information was obtained on mutants D113A and D121A, by focusing on the kinetics of colicin A and colicin N activities through measurements of potassium efflux. D113 appeared to play an essential role for colicin A activity, whereas colicin N activity was more dependent on D121 than on D113.
Full Text
The Full Text of this article is available as a PDF (262.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bainbridge G., Armstrong G. A., Dover L. G., Whelan K. F., Lakey J. H. Displacement of OmpF loop 3 is not required for the membrane translocation of colicins N and A in vivo. FEBS Lett. 1998 Aug 7;432(3):117–122. doi: 10.1016/s0014-5793(98)00846-1. [DOI] [PubMed] [Google Scholar]
- Bourdineaud J. P., Boulanger P., Lazdunski C., Letellier L. In vivo properties of colicin A: channel activity is voltage dependent but translocation may be voltage independent. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1037–1041. doi: 10.1073/pnas.87.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourdineaud J. P., Fierobe H. P., Lazdunski C., Pagès J. M. Involvement of OmpF during reception and translocation steps of colicin N entry. Mol Microbiol. 1990 Oct;4(10):1737–1743. doi: 10.1111/j.1365-2958.1990.tb00551.x. [DOI] [PubMed] [Google Scholar]
- Bredin Jérôme, Saint Nathalie, Malléa Monique, Dé Emmanuelle, Molle Gérard, Pagès Jean-Marie, Simonet Valérie. Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochem J. 2002 May 1;363(Pt 3):521–528. doi: 10.1042/0264-6021:3630521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao Zhenghua, Klebba Phillip E. Mechanisms of colicin binding and transport through outer membrane porins. Biochimie. 2002 May-Jun;84(5-6):399–412. doi: 10.1016/s0300-9084(02)01455-4. [DOI] [PubMed] [Google Scholar]
- Chevalier J., Malléa M., Pagès J. M. Comparative aspects of the diffusion of norfloxacin, cefepime and spermine through the F porin channel of Enterobacter cloacae. Biochem J. 2000 May 15;348(Pt 1):223–227. [PMC free article] [PubMed] [Google Scholar]
- Chevalier J., Pagès J. M., Malléa M. In vivo modification of porin activity conferring antibiotic resistance to Enterobacter aerogenes. Biochem Biophys Res Commun. 1999 Dec 9;266(1):248–251. doi: 10.1006/bbrc.1999.1795. [DOI] [PubMed] [Google Scholar]
- Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
- Dela Vega A. L., Delcour A. H. Polyamines decrease Escherichia coli outer membrane permeability. J Bacteriol. 1996 Jul;178(13):3715–3721. doi: 10.1128/jb.178.13.3715-3721.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fourel D., Hikita C., Bolla J. M., Mizushima S., Pagès J. M. Characterization of ompF domains involved in Escherichia coli K-12 sensitivity to colicins A and N. J Bacteriol. 1990 Jul;172(7):3675–3680. doi: 10.1128/jb.172.7.3675-3680.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hancock R. E. The bacterial outer membrane as a drug barrier. Trends Microbiol. 1997 Jan;5(1):37–42. doi: 10.1016/S0966-842X(97)81773-8. [DOI] [PubMed] [Google Scholar]
- Iyer R., Delcour A. H. Complex inhibition of OmpF and OmpC bacterial porins by polyamines. J Biol Chem. 1997 Jul 25;272(30):18595–18601. doi: 10.1074/jbc.272.30.18595. [DOI] [PubMed] [Google Scholar]
- Iyer R., Wu Z., Woster P. M., Delcour A. H. Molecular basis for the polyamine-ompF porin interactions: inhibitor and mutant studies. J Mol Biol. 2000 Apr 7;297(4):933–945. doi: 10.1006/jmbi.2000.3599. [DOI] [PubMed] [Google Scholar]
- Izard J., Parker M. W., Chartier M., Duché D., Baty D. A single amino acid substitution can restore the solubility of aggregated colicin A mutants in Escherichia coli. Protein Eng. 1994 Dec;7(12):1495–1500. doi: 10.1093/protein/7.12.1495. [DOI] [PubMed] [Google Scholar]
- Jeanteur D., Schirmer T., Fourel D., Simonet V., Rummel G., Widmer C., Rosenbusch J. P., Pattus F., Pagès J. M. Structural and functional alterations of a colicin-resistant mutant of OmpF porin from Escherichia coli. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10675–10679. doi: 10.1073/pnas.91.22.10675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karshikoff A., Spassov V., Cowan S. W., Ladenstein R., Schirmer T. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol. 1994 Jul 22;240(4):372–384. doi: 10.1006/jmbi.1994.1451. [DOI] [PubMed] [Google Scholar]
- Koebnik R., Locher K. P., Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000 Jul;37(2):239–253. doi: 10.1046/j.1365-2958.2000.01983.x. [DOI] [PubMed] [Google Scholar]
- Nestorovich Ekaterina M., Danelon Christophe, Winterhalter Mathias, Bezrukov Sergey M. Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci U S A. 2002 Jul 15;99(15):9789–9794. doi: 10.1073/pnas.152206799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H., Normark S. Sensitivity of Escherichia coli to various beta-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic beta-lactamases: a quantitative predictive treatment. Mol Microbiol. 1987 Jul;1(1):29–36. doi: 10.1111/j.1365-2958.1987.tb00523.x. [DOI] [PubMed] [Google Scholar]
- Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994 Apr 15;264(5157):382–388. doi: 10.1126/science.8153625. [DOI] [PubMed] [Google Scholar]
- Nikaido H., Rosenberg E. Y., Foulds J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol. 1983 Jan;153(1):232–240. doi: 10.1128/jb.153.1.232-240.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H., Rosenberg E. Y. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol. 1983 Jan;153(1):241–252. doi: 10.1128/jb.153.1.241-252.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prilipov A., Phale P. S., Van Gelder P., Rosenbusch J. P., Koebnik R. Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli. FEMS Microbiol Lett. 1998 Jun 1;163(1):65–72. doi: 10.1111/j.1574-6968.1998.tb13027.x. [DOI] [PubMed] [Google Scholar]
- Saint N., Lou K. L., Widmer C., Luckey M., Schirmer T., Rosenbusch J. P. Structural and functional characterization of OmpF porin mutants selected for larger pore size. II. Functional characterization. J Biol Chem. 1996 Aug 23;271(34):20676–20680. [PubMed] [Google Scholar]
- Samartzidou H., Delcour A. H. Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J Bacteriol. 1999 Feb;181(3):791–798. doi: 10.1128/jb.181.3.791-798.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schirmer T. General and specific porins from bacterial outer membranes. J Struct Biol. 1998;121(2):101–109. doi: 10.1006/jsbi.1997.3946. [DOI] [PubMed] [Google Scholar]
- Simonet V., Mallea M., Fourel D., Bolla J. M., Pages J. M. Crucial domains are conserved in Enterobacteriaceae porins. FEMS Microbiol Lett. 1996 Feb 1;136(1):91–97. doi: 10.1111/j.1574-6968.1996.tb08030.x. [DOI] [PubMed] [Google Scholar]
- Simonet V., Malléa M., Pagès J. M. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother. 2000 Feb;44(2):311–315. doi: 10.1128/aac.44.2.311-315.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vidal Stéphanie, Brouant Pierre, Chevalier Jacqueline, Malléa Monique, Barbe Jacques, Pagès Jean-Marie. Computer simulation of spermine-porin channel interactions. In Vivo. 2002 Mar-Apr;16(2):111–116. [PubMed] [Google Scholar]
- Zakharov Stanislav D., Cramer William A. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta. 2002 Oct 11;1565(2):333–346. doi: 10.1016/s0005-2736(02)00579-5. [DOI] [PubMed] [Google Scholar]
- delaVega A. L., Delcour A. H. Cadaverine induces closing of E. coli porins. EMBO J. 1995 Dec 1;14(23):6058–6065. doi: 10.1002/j.1460-2075.1995.tb00294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el Kouhen R., Fierobe H. P., Scianimanico S., Steiert M., Pattus F., Pagès J. M. Characterization of the receptor and translocator domains of colicin N. Eur J Biochem. 1993 Jun 15;214(3):635–639. doi: 10.1111/j.1432-1033.1993.tb17963.x. [DOI] [PubMed] [Google Scholar]
