Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 15;376(Pt 1):303–311. doi: 10.1042/BJ20030028

Interleukin-1-receptor-associated kinase 2 (IRAK2)-mediated interleukin-1-dependent nuclear factor kappaB transactivation in Saos2 cells requires the Akt/protein kinase B kinase.

Vittoria Cenni 1, Alessandra Sirri 1, Anto De Pol 1, Nadir Mario Maraldi 1, Sandra Marmiroli 1
PMCID: PMC1223745  PMID: 12906710

Abstract

The post-receptor pathway that leads to nuclear factor kappaB (NF-kappaB) activation begins with the assembly of a membrane-proximal complex among the interleukin 1 (IL-1) receptors and the adaptor molecules, myeloid differentiation protein 88 (MyD88), IL-1-receptor-associated kinases (IRAKs) and tumour-necrosis-factor-receptor-associated factor 6. Eventually, phosphorylation of the inhibitor of NF-kappaB (IkappaB) by the IkappaB kinases releases NF-kappaB, which translocates to the nucleus and modulates gene expression. In this paper, we report that IRAK2 and MyD88, but not IRAK1, interact physically with Akt, as demonstrated by co-immunoprecipitation and pull-down experiments. Interestingly, the association of Akt with recombinant IRAK2 is decreased by stimulation with IL-1, and is favoured by pre-treatment with phosphatase. Likewise, Akt association with IRAK2 is increased considerably by overexpression of PTEN (phosphatase and tensin homologue deleted on chromosome 10), while it is completely abrogated by overexpression of phosphoinositide-dependent protein kinase 1. These data indicate that Akt takes part in the formation of the signalling complex that conveys the signal from the IL-1 receptors to NF-kappaB, a step that is much more membrane-proximal than was reported previously. We also demonstrate that Akt activity is necessary for IL-1-dependent NF-kappaB transactivation, since a kinase-defective mutant of Akt impairs IRAK2- and MyD88-dependent, but not IRAK1-dependent, NF-kappaB activity, as monitored by a gene reporter assay. Accordingly, IRAK2 failed to trigger inducible nitric oxide synthase and IL-1beta production in cells expressing dominant-negative Akt. However, NF-kappaB binding to DNA was not affected by inhibition of Akt, indicating that Akt regulates NF-kappaB at a level distinct from the dissociation of p65 from IkappaBalpha and its translocation to the nucleus, possibly involving phosphorylation of the p65 transactivation domain.

Full Text

The Full Text of this article is available as a PDF (267.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Andjelkovic M., Caudwell B., Cron P., Morrice N., Cohen P., Hemmings B. A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996 Dec 2;15(23):6541–6551. [PMC free article] [PubMed] [Google Scholar]
  2. Bavelloni A., Santi S., Sirri A., Riccio M., Faenza I., Zini N., Cecchi S., Ferri A., Auron P., Maraldi N. M. Phosphatidylinositol 3-kinase translocation to the nucleus is induced by interleukin 1 and prevented by mutation of interleukin 1 receptor in human osteosarcoma Saos-2 cells. J Cell Sci. 1999 Mar;112(Pt 5):631–640. doi: 10.1242/jcs.112.5.631. [DOI] [PubMed] [Google Scholar]
  3. Burns K., Clatworthy J., Martin L., Martinon F., Plumpton C., Maschera B., Lewis A., Ray K., Tschopp J., Volpe F. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol. 2000 Jun;2(6):346–351. doi: 10.1038/35014038. [DOI] [PubMed] [Google Scholar]
  4. Cao Z., Henzel W. J., Gao X. IRAK: a kinase associated with the interleukin-1 receptor. Science. 1996 Feb 23;271(5252):1128–1131. doi: 10.1126/science.271.5252.1128. [DOI] [PubMed] [Google Scholar]
  5. Cao Z., Xiong J., Takeuchi M., Kurama T., Goeddel D. V. TRAF6 is a signal transducer for interleukin-1. Nature. 1996 Oct 3;383(6599):443–446. doi: 10.1038/383443a0. [DOI] [PubMed] [Google Scholar]
  6. Cenni Vittoria, Döppler Heike, Sonnenburg Erica D., Maraldi Nadir, Newton Alexandra C., Toker Alex. Regulation of novel protein kinase C epsilon by phosphorylation. Biochem J. 2002 May 1;363(Pt 3):537–545. doi: 10.1042/0264-6021:3630537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Bing-Chang, Wu Wen-Tung, Ho Feng-Ming, Lin Wan-Wan. Inhibition of interleukin-1beta -induced NF-kappa B activation by calcium/calmodulin-dependent protein kinase kinase occurs through Akt activation associated with interleukin-1 receptor-associated kinase phosphorylation and uncoupling of MyD88. J Biol Chem. 2002 Apr 25;277(27):24169–24179. doi: 10.1074/jbc.M106014200. [DOI] [PubMed] [Google Scholar]
  8. Delhase M., Li N., Karin M. Kinase regulation in inflammatory response. Nature. 2000 Jul 27;406(6794):367–368. doi: 10.1038/35019154. [DOI] [PubMed] [Google Scholar]
  9. Hu Y., Baud V., Delhase M., Zhang P., Deerinck T., Ellisman M., Johnson R., Karin M. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science. 1999 Apr 9;284(5412):316–320. doi: 10.1126/science.284.5412.316. [DOI] [PubMed] [Google Scholar]
  10. Hukkanen M., Hughes F. J., Buttery L. D., Gross S. S., Evans T. J., Seddon S., Riveros-Moreno V., Macintyre I., Polak J. M. Cytokine-stimulated expression of inducible nitric oxide synthase by mouse, rat, and human osteoblast-like cells and its functional role in osteoblast metabolic activity. Endocrinology. 1995 Dec;136(12):5445–5453. doi: 10.1210/endo.136.12.7588294. [DOI] [PubMed] [Google Scholar]
  11. Jefferies C. A., O'Neill L. A. Rac1 regulates interleukin 1-induced nuclear factor kappaB activation in an inhibitory protein kappaBalpha-independent manner by enhancing the ability of the p65 subunit to transactivate gene expression. J Biol Chem. 2000 Feb 4;275(5):3114–3120. doi: 10.1074/jbc.275.5.3114. [DOI] [PubMed] [Google Scholar]
  12. Jiang Zhengfan, Ninomiya-Tsuji Jun, Qian Youcun, Matsumoto Kunihiro, Li Xiaoxia. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol. 2002 Oct;22(20):7158–7167. doi: 10.1128/MCB.22.20.7158-7167.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kane L. P., Shapiro V. S., Stokoe D., Weiss A. Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol. 1999 Jun 3;9(11):601–604. doi: 10.1016/s0960-9822(99)80265-6. [DOI] [PubMed] [Google Scholar]
  14. Li Q., Van Antwerp D., Mercurio F., Lee K. F., Verma I. M. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science. 1999 Apr 9;284(5412):321–325. doi: 10.1126/science.284.5412.321. [DOI] [PubMed] [Google Scholar]
  15. Li Shyun, Strelow Astrid, Fontana Elizabeth J., Wesche Holger. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5567–5572. doi: 10.1073/pnas.082100399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lozano J., Berra E., Municio M. M., Diaz-Meco M. T., Dominguez I., Sanz L., Moscat J. Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem. 1994 Jul 29;269(30):19200–19202. [PubMed] [Google Scholar]
  17. Madge L. A., Pober J. S. A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFkappaB in human endothelial cells. J Biol Chem. 2000 May 19;275(20):15458–15465. doi: 10.1074/jbc.M001237200. [DOI] [PubMed] [Google Scholar]
  18. Madrid L. V., Mayo M. W., Reuther J. Y., Baldwin A. S., Jr Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem. 2001 Mar 20;276(22):18934–18940. doi: 10.1074/jbc.M101103200. [DOI] [PubMed] [Google Scholar]
  19. Madrid L. V., Wang C. Y., Guttridge D. C., Schottelius A. J., Baldwin A. S., Jr, Mayo M. W. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol. 2000 Mar;20(5):1626–1638. doi: 10.1128/mcb.20.5.1626-1638.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maraldi N. M., Marmiroli S., Rizzoli R., Mazzotti G., Manzoli F. A. Phosphatidylinositol 3-kinase translocation to the nucleus is an early event in the interleukin-1 signalling mechanism in human osteosarcoma Saos-2 cells. Adv Enzyme Regul. 1999;39:33–49. doi: 10.1016/s0065-2571(98)00021-1. [DOI] [PubMed] [Google Scholar]
  21. Marmiroli S., Bavelloni A., Faenza I., Sirri A., Ognibene A., Cenni V., Tsukada J., Koyama Y., Ruzzene M., Ferri A. Phosphatidylinositol 3-kinase is recruited to a specific site in the activated IL-1 receptor I. FEBS Lett. 1998 Oct 30;438(1-2):49–54. doi: 10.1016/s0014-5793(98)01270-8. [DOI] [PubMed] [Google Scholar]
  22. Martin A. G., San-Antonio B., Fresno M. Regulation of nuclear factor kappa B transactivation. Implication of phosphatidylinositol 3-kinase and protein kinase C zeta in c-Rel activation by tumor necrosis factor alpha. J Biol Chem. 2001 Feb 15;276(19):15840–15849. doi: 10.1074/jbc.M011313200. [DOI] [PubMed] [Google Scholar]
  23. McDermott Eva Pålsson, O'Neill Luke A. J. Ras participates in the activation of p38 MAPK by interleukin-1 by associating with IRAK, IRAK2, TRAF6, and TAK-1. J Biol Chem. 2001 Dec 13;277(10):7808–7815. doi: 10.1074/jbc.M108133200. [DOI] [PubMed] [Google Scholar]
  24. Muzio M., Ni J., Feng P., Dixit V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science. 1997 Nov 28;278(5343):1612–1615. doi: 10.1126/science.278.5343.1612. [DOI] [PubMed] [Google Scholar]
  25. Neumann Detlef, Lienenklaus Stefan, Rosati Olaf, Martin Michael U. IL-1beta-induced phosphorylation of PKB/Akt depends on the presence of IRAK-1. Eur J Immunol. 2002 Dec;32(12):3689–3698. doi: 10.1002/1521-4141(200212)32:12<3689::AID-IMMU3689>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  26. Ozes O. N., Mayo L. D., Gustin J. A., Pfeffer S. R., Pfeffer L. M., Donner D. B. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999 Sep 2;401(6748):82–85. doi: 10.1038/43466. [DOI] [PubMed] [Google Scholar]
  27. Reddy S. A., Huang J. H., Liao W. S. Phosphatidylinositol 3-kinase in interleukin 1 signaling. Physical interaction with the interleukin 1 receptor and requirement in NFkappaB and AP-1 activation. J Biol Chem. 1997 Nov 14;272(46):29167–29173. doi: 10.1074/jbc.272.46.29167. [DOI] [PubMed] [Google Scholar]
  28. Ruckdeschel Klaus, Mannel Oliver, Schröttner Percy. Divergence of apoptosis-inducing and preventing signals in bacteria-faced macrophages through myeloid differentiation factor 88 and IL-1 receptor-associated kinase members. J Immunol. 2002 May 1;168(9):4601–4611. doi: 10.4049/jimmunol.168.9.4601. [DOI] [PubMed] [Google Scholar]
  29. Sakurai H., Chiba H., Miyoshi H., Sugita T., Toriumi W. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem. 1999 Oct 22;274(43):30353–30356. doi: 10.1074/jbc.274.43.30353. [DOI] [PubMed] [Google Scholar]
  30. Sims J. E., Acres R. B., Grubin C. E., McMahan C. J., Wignall J. M., March C. J., Dower S. K. Cloning the interleukin 1 receptor from human T cells. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8946–8950. doi: 10.1073/pnas.86.22.8946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sizemore N., Leung S., Stark G. R. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol. 1999 Jul;19(7):4798–4805. doi: 10.1128/mcb.19.7.4798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sizemore Nywana, Lerner Natalia, Dombrowski Nicole, Sakurai Hiroaki, Stark George R. Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem. 2001 Dec 3;277(6):3863–3869. doi: 10.1074/jbc.M110572200. [DOI] [PubMed] [Google Scholar]
  33. Suzuki Nobutaka, Suzuki Shinobu, Duncan Gordon S., Millar Douglas G., Wada Teiji, Mirtsos Christine, Takada Hidetoshi, Wakeham Andrew, Itie Annick, Li Shyun. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature. 2002 Mar 31;416(6882):750–756. doi: 10.1038/nature736. [DOI] [PubMed] [Google Scholar]
  34. Takeda K., Takeuchi O., Tsujimura T., Itami S., Adachi O., Kawai T., Sanjo H., Yoshikawa K., Terada N., Akira S. Limb and skin abnormalities in mice lacking IKKalpha. Science. 1999 Apr 9;284(5412):313–316. doi: 10.1126/science.284.5412.313. [DOI] [PubMed] [Google Scholar]
  35. Warner S. J., Auger K. R., Libby P. Interleukin 1 induces interleukin 1. II. Recombinant human interleukin 1 induces interleukin 1 production by adult human vascular endothelial cells. J Immunol. 1987 Sep 15;139(6):1911–1917. [PubMed] [Google Scholar]
  36. Wesche H., Gao X., Li X., Kirschning C. J., Stark G. R., Cao Z. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem. 1999 Jul 2;274(27):19403–19410. doi: 10.1074/jbc.274.27.19403. [DOI] [PubMed] [Google Scholar]
  37. Wesche H., Henzel W. J., Shillinglaw W., Li S., Cao Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity. 1997 Dec;7(6):837–847. doi: 10.1016/s1074-7613(00)80402-1. [DOI] [PubMed] [Google Scholar]
  38. Wesche H., Resch K., Martin M. U. Effects of IL-1 receptor accessory protein on IL-1 binding. FEBS Lett. 1998 Jun 16;429(3):303–306. doi: 10.1016/s0014-5793(98)00468-2. [DOI] [PubMed] [Google Scholar]
  39. Yamin T. T., Miller D. K. The interleukin-1 receptor-associated kinase is degraded by proteasomes following its phosphorylation. J Biol Chem. 1997 Aug 22;272(34):21540–21547. doi: 10.1074/jbc.272.34.21540. [DOI] [PubMed] [Google Scholar]
  40. Zhang Guolong, Ghosh Sankar. Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem. 2001 Dec 18;277(9):7059–7065. doi: 10.1074/jbc.M109537200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES