Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 15;376(Pt 1):291–302. doi: 10.1042/BJ20030736

A tobacco (Nicotiana tabaccum) calmodulin-binding protein kinase, NtCBK2, is regulated differentially by calmodulin isoforms.

Wei Hua 1, Shuping Liang 1, Ying-Tang Lu 1
PMCID: PMC1223747  PMID: 12911329

Abstract

A calcium (Ca2+)/calmodulin (CaM)-binding protein kinase (CBK) from tobacco (Nicotiana tabaccum ), NtCBK2, has been characterized molecularly and biochemically. NtCBK2 has all 11 conserved subdomains of the kinase-catalytic domain and a CaM-binding site as shown by other kinases, including Ca2+-dependent protein kinase and chimaeric Ca2+/CaM-dependent protein kinases. However, this kinase does not contain an EF-hand motif for Ca2+ binding, and its activity was not regulated by Ca2+. Whereas NtCBK2 phosphorylated both itself and other substrates, such as histone IIIS and syntide-2, in a Ca2+/CaM-independent manner, as also shown by OsCBK, a CaM-binding protein kinase from rice (Oryza sativa ), the kinase activity of NtCBK2 was greatly stimulated by Ca2+/CaM, whereas that of OsCBK was not. By molecular dissection analyses, the CaM-binding domain of NtCBK2 has been localized in a stretch of 30 amino acid residues at residue positions 431-460 as a 1-5-10 protein motif. Three tobacco CaM isoforms (NtCaM1, NtCaM3 and NtCaM13) used in the present study have been shown to bind to NtCBK2, but with different dissociation constants ( K(d)s), as follows: NtCaM1, 55.7 nM; NtCaM3, 25.4 nM; and NtCaM13, 19.8 nM, indicating that NtCBK2 has a higher affinity for NtCaM3 and NtCaM13 than for NtCaM1. The enzymic activity of NtCBK2 was also modulated differently by various CaM isoforms. Whereas the phosphorylation activity of NtCBK2 was shown by assay to be enhanced only approximately 2-3-fold by the presence of NtCaM1, the activity could be amplified up to 8-9-fold by NtCaM3 or 10-11-fold by NtCaM13, suggesting that NtCaM3 and NtCaM13 are better activators than NtCaM1 for NtCBK2.

Full Text

The Full Text of this article is available as a PDF (636.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Billingsley M. L., Pennypacker K. R., Hoover C. G., Brigati D. J., Kincaid R. L. A rapid and sensitive method for detection and quantification of calcineurin and calmodulin-binding proteins using biotinylated calmodulin. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7585–7589. doi: 10.1073/pnas.82.22.7585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braun A. P., Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol. 1995;57:417–445. doi: 10.1146/annurev.ph.57.030195.002221. [DOI] [PubMed] [Google Scholar]
  3. Carafoli Ernesto. The calcium-signalling saga: tap water and protein crystals. Nat Rev Mol Cell Biol. 2003 Apr;4(4):326–332. doi: 10.1038/nrm1073. [DOI] [PubMed] [Google Scholar]
  4. Cheng Shu-Hua, Willmann Matthew R., Chen Huei-Chi, Sheen Jen. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 2002 Jun;129(2):469–485. doi: 10.1104/pp.005645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chin D., Means A. R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000 Aug;10(8):322–328. doi: 10.1016/s0962-8924(00)01800-6. [DOI] [PubMed] [Google Scholar]
  6. Choi Ji Young, Lee Sang Hyoung, Park Chan Young, Heo Won Do, Kim Jong Cheol, Kim Min Chul, Chung Woo Sik, Moon Byeong Cheol, Cheong Yong Hwa, Kim Cha Young. Identification of calmodulin isoform-specific binding peptides from a phage-displayed random 22-mer peptide library. J Biol Chem. 2002 Mar 18;277(24):21630–21638. doi: 10.1074/jbc.M110803200. [DOI] [PubMed] [Google Scholar]
  7. Chung W. S., Lee S. H., Kim J. C., Heo W. D., Kim M. C., Park C. Y., Park H. C., Lim C. O., Kim W. B., Harper J. F. Identification of a calmodulin-regulated soybean Ca(2+)-ATPase (SCA1) that is located in the plasma membrane. Plant Cell. 2000 Aug;12(8):1393–1407. doi: 10.1105/tpc.12.8.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furumoto T., Ogawa N., Hata S., Izui K. Plant calcium-dependent protein kinase-related kinases (CRKs) do not require calcium for their activities. FEBS Lett. 1996 Nov 4;396(2-3):147–151. doi: 10.1016/0014-5793(96)01090-3. [DOI] [PubMed] [Google Scholar]
  9. Harmon A. C., Gribskov M., Harper J. F. CDPKs - a kinase for every Ca2+ signal? Trends Plant Sci. 2000 Apr;5(4):154–159. doi: 10.1016/s1360-1385(00)01577-6. [DOI] [PubMed] [Google Scholar]
  10. Harper J. F., Sussman M. R., Schaller G. E., Putnam-Evans C., Charbonneau H., Harmon A. C. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science. 1991 May 17;252(5008):951–954. doi: 10.1126/science.1852075. [DOI] [PubMed] [Google Scholar]
  11. Huang J. F., Teyton L., Harper J. F. Activation of a Ca(2+)-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain. Biochemistry. 1996 Oct 8;35(40):13222–13230. doi: 10.1021/bi960498a. [DOI] [PubMed] [Google Scholar]
  12. Kondo R., Tikunova S. B., Cho M. J., Johnson J. D. A point mutation in a plant calmodulin is responsible for its inhibition of nitric-oxide synthase. J Biol Chem. 1999 Dec 17;274(51):36213–36218. doi: 10.1074/jbc.274.51.36213. [DOI] [PubMed] [Google Scholar]
  13. Lee Justin, Rudd Jason J. Calcium-dependent protein kinases: versatile plant signalling components necessary for pathogen defence. Trends Plant Sci. 2002 Mar;7(3):97–98. doi: 10.1016/s1360-1385(02)02229-x. [DOI] [PubMed] [Google Scholar]
  14. Lee S. H., Johnson J. D., Walsh M. P., Van Lierop J. E., Sutherland C., Xu A., Snedden W. A., Kosk-Kosicka D., Fromm H., Narayanan N. Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochem J. 2000 Aug 15;350(Pt 1):299–306. [PMC free article] [PubMed] [Google Scholar]
  15. Lee S. H., Kim J. C., Lee M. S., Heo W. D., Seo H. Y., Yoon H. W., Hong J. C., Lee S. Y., Bahk J. D., Hwang I. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J Biol Chem. 1995 Sep 15;270(37):21806–21812. doi: 10.1074/jbc.270.37.21806. [DOI] [PubMed] [Google Scholar]
  16. Liao B., Gawienowski M. C., Zielinski R. E. Differential stimulation of NAD kinase and binding of peptide substrates by wild-type and mutant plant calmodulin isoforms. Arch Biochem Biophys. 1996 Mar 1;327(1):53–60. doi: 10.1006/abbi.1996.0092. [DOI] [PubMed] [Google Scholar]
  17. Lin C. R., Kapiloff M. S., Durgerian S., Tatemoto K., Russo A. F., Hanson P., Schulman H., Rosenfeld M. G. Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5962–5966. doi: 10.1073/pnas.84.16.5962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindzen E., Choi J. H. A carrot cDNA encoding an atypical protein kinase homologous to plant calcium-dependent protein kinases. Plant Mol Biol. 1995 Aug;28(5):785–797. doi: 10.1007/BF00042065. [DOI] [PubMed] [Google Scholar]
  19. Liu B. F., Zhang L., Lu Y. T. Characterization of phosphorylation of a novel protein kinase in rice cells by capillary electrophoresis. J Chromatogr A. 2001 May 25;918(2):401–409. doi: 10.1016/s0021-9673(01)00741-5. [DOI] [PubMed] [Google Scholar]
  20. Liu Z., Xia M., Poovaiah B. W. Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms. Plant Mol Biol. 1998 Nov;38(5):889–897. doi: 10.1023/a:1006019001200. [DOI] [PubMed] [Google Scholar]
  21. Lu Y. T., Hidaka H., Feldman L. J. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism. Planta. 1996;199(1):18–24. doi: 10.1007/BF00196876. [DOI] [PubMed] [Google Scholar]
  22. O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
  23. Pandey S., Sopory S. K. Biochemical evidence for a calmodulin-stimulated calcium-dependent protein kinase in maize. Eur J Biochem. 1998 Aug 1;255(3):718–726. doi: 10.1046/j.1432-1327.1998.2550718.x. [DOI] [PubMed] [Google Scholar]
  24. Patil S., Takezawa D., Poovaiah B. W. Chimeric plant calcium/calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4897–4901. doi: 10.1073/pnas.92.11.4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ramachandiran S., Takezawa D., Wang W., Poovaiah B. W. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains. J Biochem. 1997 May;121(5):984–990. doi: 10.1093/oxfordjournals.jbchem.a021684. [DOI] [PubMed] [Google Scholar]
  26. Reddy A. S.N. Calcium: silver bullet in signaling. Plant Sci. 2001 Feb 5;160(3):381–404. doi: 10.1016/s0168-9452(00)00386-1. [DOI] [PubMed] [Google Scholar]
  27. Reddy V. S., Safadi F., Zielinski R. E., Reddy A. S. Interaction of a kinesin-like protein with calmodulin isoforms from Arabidopsis. J Biol Chem. 1999 Oct 29;274(44):31727–31733. doi: 10.1074/jbc.274.44.31727. [DOI] [PubMed] [Google Scholar]
  28. Reddy Vaka S., Ali Gul S., Reddy Anireddy S. N. Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J Biol Chem. 2002 Jan 8;277(12):9840–9852. doi: 10.1074/jbc.M111626200. [DOI] [PubMed] [Google Scholar]
  29. Rhoads A. R., Friedberg F. Sequence motifs for calmodulin recognition. FASEB J. 1997 Apr;11(5):331–340. doi: 10.1096/fasebj.11.5.9141499. [DOI] [PubMed] [Google Scholar]
  30. Sanders Dale, Pelloux Jérôme, Brownlee Colin, Harper Jeffrey F. Calcium at the crossroads of signaling. Plant Cell. 2002;14 (Suppl):S401–S417. doi: 10.1105/tpc.002899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sikela J. M., Hahn W. E. Screening an expression library with a ligand probe: isolation and sequence of a cDNA corresponding to a brain calmodulin-binding protein. Proc Natl Acad Sci U S A. 1987 May;84(9):3038–3042. doi: 10.1073/pnas.84.9.3038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Soderling T. R., Stull J. T. Structure and regulation of calcium/calmodulin-dependent protein kinases. Chem Rev. 2001 Aug;101(8):2341–2352. doi: 10.1021/cr0002386. [DOI] [PubMed] [Google Scholar]
  33. Takezawa D., Liu Z. H., An G., Poovaiah B. W. Calmodulin gene family in potato: developmental and touch-induced expression of the mRNA encoding a novel isoform. Plant Mol Biol. 1995 Feb;27(4):693–703. doi: 10.1007/BF00020223. [DOI] [PubMed] [Google Scholar]
  34. Takezawa D., Ramachandiran S., Paranjape V., Poovaiah B. W. Dual regulation of a chimeric plant serine/threonine kinase by calcium and calcium/calmodulin. J Biol Chem. 1996 Apr 5;271(14):8126–8132. doi: 10.1074/jbc.271.14.8126. [DOI] [PubMed] [Google Scholar]
  35. Vetter Stefan W., Leclerc Estelle. Novel aspects of calmodulin target recognition and activation. Eur J Biochem. 2003 Feb;270(3):404–414. doi: 10.1046/j.1432-1033.2003.03414.x. [DOI] [PubMed] [Google Scholar]
  36. Wang L., Liang S., Lu Y. T. Characterization, physical location and expression of the genes encoding calcium/calmodulin-dependent protein kinases in maize (Zea mays L.). Planta. 2001 Aug;213(4):556–564. doi: 10.1007/s004250100540. [DOI] [PubMed] [Google Scholar]
  37. Watillon B., Kettmann R., Boxus P., Burny A. A calcium/calmodulin-binding serine/threonine protein kinase homologous to the mammalian type II calcium/calmodulin-dependent protein kinase is expressed in plant cells. Plant Physiol. 1993 Apr;101(4):1381–1384. doi: 10.1104/pp.101.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Watillon B., Kettmann R., Boxus P., Burny A. Structure of a calmodulin-binding protein kinase gene from apple. Plant Physiol. 1995 Jun;108(2):847–848. doi: 10.1104/pp.108.2.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamakawa H., Mitsuhara I., Ito N., Seo S., Kamada H., Ohashi Y. Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur J Biochem. 2001 Jul;268(14):3916–3929. doi: 10.1046/j.1432-1327.2001.02301.x. [DOI] [PubMed] [Google Scholar]
  40. Zhang A. J., Bai G., Deans-Zirattu S., Browner M. F., Lee E. Y. Expression of the catalytic subunit of phosphorylase phosphatase (protein phosphatase-1) in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):1484–1490. [PubMed] [Google Scholar]
  41. Zhang Lei, Liu Bi-Feng, Liang Shuping, Jones Russell L., Lu Ying-Tang. Molecular and biochemical characterization of a calcium/calmodulin-binding protein kinase from rice. Biochem J. 2002 Nov 15;368(Pt 1):145–157. doi: 10.1042/BJ20020780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang Lei, Lu Ying-Tang. Calmodulin-binding protein kinases in plants. Trends Plant Sci. 2003 Mar;8(3):123–127. doi: 10.1016/S1360-1385(03)00013-X. [DOI] [PubMed] [Google Scholar]
  43. Zielinski Raymond E. CALMODULIN AND CALMODULIN-BINDING PROTEINS IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):697–725. doi: 10.1146/annurev.arplant.49.1.697. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES