Abstract
The Maillard reaction between reducing sugars and amino groups of biomolecules generates complex structures known as AGEs (advanced glycation endproducts). These have been linked to protein modifications found during aging, diabetes and various amyloidoses. To investigate the contribution of alternative routes to the formation of AGEs, we developed a mathematical model that describes the generation of CML [ N(epsilon)-(carboxymethyl)lysine] in the Maillard reaction between glucose and collagen. Parameter values were obtained by fitting published data from kinetic experiments of Amadori compound decomposition and glycoxidation of collagen by glucose. These raw parameter values were subsequently fine-tuned with adjustment factors that were deduced from dynamic experiments taking into account the glucose and phosphate buffer concentrations. The fine-tuned model was used to assess the relative contributions of the reaction between glyoxal and lysine, the Namiki pathway, and Amadori compound degradation to the generation of CML. The model suggests that the glyoxal route dominates, except at low phosphate and high glucose concentrations. The contribution of Amadori oxidation is generally the least significant at low glucose concentrations. Simulations of the inhibition of CML generation by aminoguanidine show that this compound effectively blocks the glyoxal route at low glucose concentrations (5 mM). Model results are compared with literature estimates of the contributions to CML generation by the three pathways. The significance of the dominance of the glyoxal route is discussed in the context of possible natural defensive mechanisms and pharmacological interventions with the goal of inhibiting the Maillard reaction in vivo.
Full Text
The Full Text of this article is available as a PDF (205.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed M. U., Brinkmann Frye E., Degenhardt T. P., Thorpe S. R., Baynes J. W. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997 Jun 1;324(Pt 2):565–570. doi: 10.1042/bj3240565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmed M. U., Thorpe S. R., Baynes J. W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986 Apr 15;261(11):4889–4894. [PubMed] [Google Scholar]
- Baynes J. W., Thorpe S. R., Murtiashaw M. H. Nonenzymatic glucosylation of lysine residues in albumin. Methods Enzymol. 1984;106:88–98. doi: 10.1016/0076-6879(84)06010-9. [DOI] [PubMed] [Google Scholar]
- Colaco C. A., Ledesma M. D., Harrington C. R., Avila J. The role of the Maillard reaction in other pathologies: Alzheimer's disease. Nephrol Dial Transplant. 1996;11 (Suppl 5):7–12. doi: 10.1093/ndt/11.supp5.7. [DOI] [PubMed] [Google Scholar]
- Dyer D. G., Dunn J. A., Thorpe S. R., Bailie K. E., Lyons T. J., McCance D. R., Baynes J. W. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993 Jun;91(6):2463–2469. doi: 10.1172/JCI116481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelstein D., Brownlee M. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine. Diabetes. 1992 Jan;41(1):26–29. doi: 10.2337/diab.41.1.26. [DOI] [PubMed] [Google Scholar]
- Fu M. X., Wells-Knecht K. J., Blackledge J. A., Lyons T. J., Thorpe S. R., Baynes J. W. Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes. 1994 May;43(5):676–683. doi: 10.2337/diab.43.5.676. [DOI] [PubMed] [Google Scholar]
- Glomb M. A., Monnier V. M. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem. 1995 Apr 28;270(17):10017–10026. doi: 10.1074/jbc.270.17.10017. [DOI] [PubMed] [Google Scholar]
- Iberg N., Flückiger R. Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. J Biol Chem. 1986 Oct 15;261(29):13542–13545. [PubMed] [Google Scholar]
- Khalifah R. G., Baynes J. W., Hudson B. G. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun. 1999 Apr 13;257(2):251–258. doi: 10.1006/bbrc.1999.0371. [DOI] [PubMed] [Google Scholar]
- Litchfield J. E., Thorpe S. R., Baynes J. W. Oxygen is not required for the browning and crosslinking of protein by pentoses: relevance to Maillard reactions in vivo. Int J Biochem Cell Biol. 1999 Nov;31(11):1297–1305. doi: 10.1016/s1357-2725(99)00091-6. [DOI] [PubMed] [Google Scholar]
- Münch G., Schinzel R., Loske C., Wong A., Durany N., Li J. J., Vlassara H., Smith M. A., Perry G., Riederer P. Alzheimer's disease--synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm (Vienna) 1998;105(4-5):439–461. doi: 10.1007/s007020050069. [DOI] [PubMed] [Google Scholar]
- Reddy S., Bichler J., Wells-Knecht K. J., Thorpe S. R., Baynes J. W. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry. 1995 Aug 29;34(34):10872–10878. doi: 10.1021/bi00034a021. [DOI] [PubMed] [Google Scholar]
- Ruggiero-Lopez D., Lecomte M., Moinet G., Patereau G., Lagarde M., Wiernsperger N. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem Pharmacol. 1999 Dec 1;58(11):1765–1773. doi: 10.1016/s0006-2952(99)00263-4. [DOI] [PubMed] [Google Scholar]
- Savageau M. A. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol. 1969 Dec;25(3):365–369. doi: 10.1016/s0022-5193(69)80026-3. [DOI] [PubMed] [Google Scholar]
- Savageau M. A. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol. 1969 Dec;25(3):370–379. doi: 10.1016/s0022-5193(69)80027-5. [DOI] [PubMed] [Google Scholar]
- Sell D. R., Lane M. A., Johnson W. A., Masoro E. J., Mock O. B., Reiser K. M., Fogarty J. F., Cutler R. G., Ingram D. K., Roth G. S. Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):485–490. doi: 10.1073/pnas.93.1.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sell D. R., Lapolla A., Odetti P., Fogarty J., Monnier V. M. Pentosidine formation in skin correlates with severity of complications in individuals with long-standing IDDM. Diabetes. 1992 Oct;41(10):1286–1292. doi: 10.2337/diab.41.10.1286. [DOI] [PubMed] [Google Scholar]
- Shapiro R., McManus M. J., Zalut C., Bunn H. F. Sites of nonenzymatic glycosylation of human hemoglobin A. J Biol Chem. 1980 Apr 10;255(7):3120–3127. [PubMed] [Google Scholar]
- Shoda H., Miyata S., Liu B. F., Yamada H., Ohara T., Suzuki K., Oimomi M., Kasuga M. Inhibitory effects of tenilsetam on the Maillard reaction. Endocrinology. 1997 May;138(5):1886–1892. doi: 10.1210/endo.138.5.5151. [DOI] [PubMed] [Google Scholar]
- Smith P. R., Thornalley P. J. Mechanism of the degradation of non-enzymatically glycated proteins under physiological conditions. Studies with the model fructosamine, N epsilon-(1-deoxy-D-fructos-1-yl)hippuryl-lysine. Eur J Biochem. 1992 Dec 15;210(3):729–739. doi: 10.1111/j.1432-1033.1992.tb17474.x. [DOI] [PubMed] [Google Scholar]
- Thornalley P. J., Yurek-George A., Argirov O. K. Kinetics and mechanism of the reaction of aminoguanidine with the alpha-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions. Biochem Pharmacol. 2000 Jul 1;60(1):55–65. doi: 10.1016/s0006-2952(00)00287-2. [DOI] [PubMed] [Google Scholar]
- Thornalley P., Wolff S., Crabbe J., Stern A. The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochim Biophys Acta. 1984 Feb 14;797(2):276–287. doi: 10.1016/0304-4165(84)90131-4. [DOI] [PubMed] [Google Scholar]
- Vlassara H., Palace M. R. Diabetes and advanced glycation endproducts. J Intern Med. 2002 Feb;251(2):87–101. doi: 10.1046/j.1365-2796.2002.00932.x. [DOI] [PubMed] [Google Scholar]
- Watkins N. G., Neglia-Fisher C. I., Dyer D. G., Thorpe S. R., Baynes J. W. Effect of phosphate on the kinetics and specificity of glycation of protein. J Biol Chem. 1987 May 25;262(15):7207–7212. [PubMed] [Google Scholar]
- Watkins N. G., Thorpe S. R., Baynes J. W. Glycation of amino groups in protein. Studies on the specificity of modification of RNase by glucose. J Biol Chem. 1985 Sep 5;260(19):10629–10636. [PubMed] [Google Scholar]
- Wells-Knecht K. J., Zyzak D. V., Litchfield J. E., Thorpe S. R., Baynes J. W. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 1995 Mar 21;34(11):3702–3709. doi: 10.1021/bi00011a027. [DOI] [PubMed] [Google Scholar]
- Wells-Knecht M. C., Thorpe S. R., Baynes J. W. Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry. 1995 Nov 21;34(46):15134–15141. doi: 10.1021/bi00046a020. [DOI] [PubMed] [Google Scholar]
- Wolff S. P., Dean R. T. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J. 1987 Jul 1;245(1):243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zyzak D. V., Richardson J. M., Thorpe S. R., Baynes J. W. Formation of reactive intermediates from Amadori compounds under physiological conditions. Arch Biochem Biophys. 1995 Jan 10;316(1):547–554. doi: 10.1006/abbi.1995.1073. [DOI] [PubMed] [Google Scholar]