Abstract
17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the conversion of 17beta-OH (-hydroxy)/17-oxo groups of steroids, and are essential in mammalian hormone physiology. At present, eleven 17beta-HSD isoforms have been defined in mammals, with different tissue-expression and substrate-conversion patterns. We analysed 17beta-HSD type 10 (17beta-HSD10) from humans and Drosophila, the latter known to be essential in development. In addition to the known hydroxyacyl-CoA dehydrogenase, and 3alpha-OH and 17beta-OH activities with sex steroids, we here demonstrate novel activities of 17beta-HSD10. Both species variants oxidize the 20beta-OH and 21-OH groups in C21 steroids, and act as 7beta-OH dehydrogenases of ursodeoxycholic or isoursodeoxycholic acid (also known as 7beta-hydroxylithocholic acid or 7beta-hydroxyisolithocholic acid respectively). Additionally, the human orthologue oxidizes the 7alpha-OH of chenodeoxycholic acid (5beta-cholanic acid, 3alpha,7alpha-diol) and cholic acid (5beta-cholanic acid). These novel substrate specificities are explained by homology models based on the orthologous rat crystal structure, showing a wide hydrophobic cleft, capable of accommodating steroids in different orientations. These properties suggest that the human enzyme is involved in glucocorticoid and gestagen catabolism, and participates in bile acid isomerization. Confocal microscopy and electron microscopy studies reveal that the human form is localized to mitochondria, whereas Drosophila 17beta-HSD10 shows a cytosolic localization pattern, possibly due to an N-terminal sequence difference that in human 17beta-HSD10 constitutes a mitochondrial targeting signal, extending into the Rossmann-fold motif.
Full Text
The Full Text of this article is available as a PDF (466.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abagyan R., Batalov S., Cardozo T., Totrov M., Webber J., Zhou Y. Homology modeling with internal coordinate mechanics: deformation zone mapping and improvements of models via conformational search. Proteins. 1997;Suppl 1:29–37. doi: 10.1002/(sici)1097-0134(1997)1+<29::aid-prot5>3.3.co;2-4. [DOI] [PubMed] [Google Scholar]
- Bauer Matthias F., Hofmann Sabine, Neupert Walter. Import of mitochondrial proteins. Int Rev Neurobiol. 2002;53:57–90. doi: 10.1016/s0074-7742(02)53004-x. [DOI] [PubMed] [Google Scholar]
- Cardozo T., Totrov M., Abagyan R. Homology modeling by the ICM method. Proteins. 1995 Nov;23(3):403–414. doi: 10.1002/prot.340230314. [DOI] [PubMed] [Google Scholar]
- Filling Charlotta, Berndt Kurt D., Benach Jordi, Knapp Stefan, Prozorovski Tim, Nordling Erik, Ladenstein Rudolf, Jörnvall Hans, Oppermann Udo. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem. 2002 Apr 25;277(28):25677–25684. doi: 10.1074/jbc.M202160200. [DOI] [PubMed] [Google Scholar]
- GUSTAFSSON B. E., NORMAN A., SJOVALL J. Influence of E. coli infection on turnover and metabolism of cholic acid in germ-free rats. Arch Biochem Biophys. 1960 Nov;91:93–100. doi: 10.1016/0003-9861(60)90460-4. [DOI] [PubMed] [Google Scholar]
- Hansis C., Jähner D., Spiess A. N., Boettcher K., Ivell R. The gene for the Alzheimer-associated beta-amyloid-binding protein (ERAB) is differentially expressed in the testicular Leydig cells of the azoospermic by w/w(v) mouse. Eur J Biochem. 1998 Nov 15;258(1):53–60. doi: 10.1046/j.1432-1327.1998.2580053.x. [DOI] [PubMed] [Google Scholar]
- He X. Y., Merz G., Mehta P., Schulz H., Yang S. Y. Human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase is a single-domain multifunctional enzyme. Characterization of a novel 17beta-hydroxysteroid dehydrogenase. J Biol Chem. 1999 May 21;274(21):15014–15019. doi: 10.1074/jbc.274.21.15014. [DOI] [PubMed] [Google Scholar]
- He X. Y., Merz G., Yang Y. Z., Mehta P., Schulz H., Yang S. Y. Characterization and localization of human type10 17beta-hydroxysteroid dehydrogenase. Eur J Biochem. 2001 Sep;268(18):4899–4907. doi: 10.1046/j.0014-2956.2001.02421.2421.x. [DOI] [PubMed] [Google Scholar]
- He X. Y., Merz G., Yang Y. Z., Pullakart R., Mehta P., Schulz H., Yang S. Y. Function of human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase in androgen metabolism. Biochim Biophys Acta. 2000 Apr 12;1484(2-3):267–277. doi: 10.1016/s1388-1981(00)00014-7. [DOI] [PubMed] [Google Scholar]
- He X. Y., Yang Y. Z., Schulz H., Yang S. Y. Intrinsic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities of human mitochondrial short-chain L-3-hydroxyacyl-CoA dehydrogenase. Biochem J. 2000 Jan 1;345(Pt 1):139–143. [PMC free article] [PubMed] [Google Scholar]
- Jez J. M., Bennett M. J., Schlegel B. P., Lewis M., Penning T. M. Comparative anatomy of the aldo-keto reductase superfamily. Biochem J. 1997 Sep 15;326(Pt 3):625–636. doi: 10.1042/bj3260625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee H. J., Monder C. Oxidation of corticosteroids to steroidal carboxylic acids by an enzyme preparation from hamster liver. Biochemistry. 1977 Aug 23;16(17):3810–3814. doi: 10.1021/bi00636a014. [DOI] [PubMed] [Google Scholar]
- Lippman V., Monder C. Purification and properties of an NADPH-dependent 21-oxo-20-hydroxysteroid reductase (17beta-aldol reductase) from sheep liver. Isolation of the 20beta-glycol product. J Biol Chem. 1978 Apr 10;253(7):2126–2131. [PubMed] [Google Scholar]
- Marschall H. U., Broomé U., Einarsson C., Alvelius G., Thomas H. G., Matern S. Isoursodeoxycholic acid: metabolism and therapeutic effects in primary biliary cirrhosis. J Lipid Res. 2001 May;42(5):735–742. [PubMed] [Google Scholar]
- Martin K. O., Monder C. Oxidation of steroids with the 20beta-hydroxy-21-oxo side chain to 20beta-hydroxy-21-oic acids by horse liver aldehyde dehydrogenases. J Steroid Biochem. 1978 Dec;9(12):1233–1240. doi: 10.1016/0022-4731(78)90018-3. [DOI] [PubMed] [Google Scholar]
- Nakajin S., Takase N., Ohno S., Toyoshima S., Baker M. E. Mutation of tyrosine-194 and lysine-198 in the catalytic site of pig 3alpha/beta,20beta-hydroxysteroid dehydrogenase. Biochem J. 1998 Sep 15;334(Pt 3):553–557. doi: 10.1042/bj3340553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nobel S., Abrahmsen L., Oppermann U. Metabolic conversion as a pre-receptor control mechanism for lipophilic hormones. Eur J Biochem. 2001 Aug;268(15):4113–4125. doi: 10.1046/j.1432-1327.2001.02359.x. [DOI] [PubMed] [Google Scholar]
- Nordling E., Oppermann U. C., Jörnvall H., Persson B. Human type 10 17 beta-hydroxysteroid dehydrogenase: molecular modelling and substrate docking. J Mol Graph Model. 2001;19(6):514-20, 591-3. doi: 10.1016/s1093-3263(00)00098-x. [DOI] [PubMed] [Google Scholar]
- Ofman Rob, Ruiter Jos P. N., Feenstra Marike, Duran Marinus, Poll-The Bwee Tien, Zschocke Johannes, Ensenauer Regina, Lehnert Willy, Sass Jörn Oliver, Sperl Wolfgang. 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene. Am J Hum Genet. 2003 Apr 14;72(5):1300–1307. doi: 10.1086/375116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oppermann U. C., Filling C., Berndt K. D., Persson B., Benach J., Ladenstein R., Jörnvall H. Active site directed mutagenesis of 3 beta/17 beta-hydroxysteroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductase reactions. Biochemistry. 1997 Jan 7;36(1):34–40. doi: 10.1021/bi961803v. [DOI] [PubMed] [Google Scholar]
- Oppermann U. C., Filling C., Jörnvall H. Forms and functions of human SDR enzymes. Chem Biol Interact. 2001 Jan 30;130-132(1-3):699–705. doi: 10.1016/s0009-2797(00)00301-x. [DOI] [PubMed] [Google Scholar]
- Oppermann Udo, Filling Charlotta, Hult Malin, Shafqat Naeem, Wu Xiaoqiu, Lindh Monica, Shafqat Jawed, Nordling Erik, Kallberg Yvonne, Persson Bengt. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact. 2003 Feb 1;143-144:247–253. doi: 10.1016/s0009-2797(02)00164-3. [DOI] [PubMed] [Google Scholar]
- Orr J. C., Monder C. The stereochemistry of enzymic reduction of 21-dehydrocortisol to cortisol. J Steroid Biochem. 1975 Mar-Apr;6(3-4):297–299. doi: 10.1016/0022-4731(75)90146-6. [DOI] [PubMed] [Google Scholar]
- Peltoketo H., Luu-The V., Simard J., Adamski J. 17beta-hydroxysteroid dehydrogenase (HSD)/17-ketosteroid reductase (KSR) family; nomenclature and main characteristics of the 17HSD/KSR enzymes. J Mol Endocrinol. 1999 Aug;23(1):1–11. doi: 10.1677/jme.0.0230001. [DOI] [PubMed] [Google Scholar]
- Penning T. M. Molecular endocrinology of hydroxysteroid dehydrogenases. Endocr Rev. 1997 Jun;18(3):281–305. doi: 10.1210/edrv.18.3.0302. [DOI] [PubMed] [Google Scholar]
- Powell A. J., Read J. A., Banfield M. J., Gunn-Moore F., Yan S. D., Lustbader J., Stern A. R., Stern D. M., Brady R. L. Recognition of structurally diverse substrates by type II 3-hydroxyacyl-CoA dehydrogenase (HADH II)/amyloid-beta binding alcohol dehydrogenase (ABAD). J Mol Biol. 2000 Oct 20;303(2):311–327. doi: 10.1006/jmbi.2000.4139. [DOI] [PubMed] [Google Scholar]
- Sciotti M., Wermuth B. Coenzyme specificity of human monomeric carbonyl reductase: contribution of Lys-15, Ala-37 and Arg-38. Chem Biol Interact. 2001 Jan 30;130-132(1-3):871–878. doi: 10.1016/s0009-2797(00)00242-8. [DOI] [PubMed] [Google Scholar]
- Swevers L., Lambert J. G., De Loof A. Synthesis and metabolism of vertebrate-type steroids by tissues of insects: a critical evaluation. Experientia. 1991 Jul 15;47(7):687–698. doi: 10.1007/BF01958817. [DOI] [PubMed] [Google Scholar]
- Torroja L., Ortuño-Sahagún D., Ferrús A., Hämmerle B., Barbas J. A. scully, an essential gene of Drosophila, is homologous to mammalian mitochondrial type II L-3-hydroxyacyl-CoA dehydrogenase/amyloid-beta peptide-binding protein. J Cell Biol. 1998 May 18;141(4):1009–1017. doi: 10.1083/jcb.141.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Totrov M., Abagyan R. Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins. 1997;Suppl 1:215–220. doi: 10.1002/(sici)1097-0134(1997)1+<215::aid-prot29>3.3.co;2-i. [DOI] [PubMed] [Google Scholar]
- Truscott Kaye N., Brandner Katrin, Pfanner Nikolaus. Mechanisms of protein import into mitochondria. Curr Biol. 2003 Apr 15;13(8):R326–R337. doi: 10.1016/s0960-9822(03)00239-2. [DOI] [PubMed] [Google Scholar]
- Webb T. J., Powls R., Rees H. H. Enzymes of ecdysteroid transformation and inactivation in the midgut of the cotton leafworm, Spodoptera littoralis: properties and developmental profiles. Biochem J. 1995 Dec 1;312(Pt 2):561–568. doi: 10.1042/bj3120561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wermuth B. Expression of human and rat carbonyl reductase in E. coli. Comparison of the recombinant enzymes. Adv Exp Med Biol. 1995;372:203–209. doi: 10.1007/978-1-4615-1965-2_26. [DOI] [PubMed] [Google Scholar]
- Yan S. D., Fu J., Soto C., Chen X., Zhu H., Al-Mohanna F., Collison K., Zhu A., Stern E., Saido T. An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer's disease. Nature. 1997 Oct 16;389(6652):689–695. doi: 10.1038/39522. [DOI] [PubMed] [Google Scholar]
- Yan S. D., Shi Y., Zhu A., Fu J., Zhu H., Zhu Y., Gibson L., Stern E., Collison K., Al-Mohanna F. Role of ERAB/L-3-hydroxyacyl-coenzyme A dehydrogenase type II activity in Abeta-induced cytotoxicity. J Biol Chem. 1999 Jan 22;274(4):2145–2156. doi: 10.1074/jbc.274.4.2145. [DOI] [PubMed] [Google Scholar]