Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 15;376(Pt 1):123–134. doi: 10.1042/BJ20030130

Insulin stimulates movement of sorting nexin 9 between cellular compartments: a putative role mediating cell surface receptor expression and insulin action.

S Lance MaCaulay 1, Violet Stoichevska 1, Julian Grusovin 1, Keith H Gough 1, Laura A Castelli 1, Colin W Ward 1
PMCID: PMC1223752  PMID: 12917015

Abstract

SNX9 (sorting nexin 9) is one member of a family of proteins implicated in protein trafficking. This family is characterized by a unique PX (Phox homology) domain that includes a proline-rich sequence and an upstream phospholipid binding domain. Many sorting nexins, including SNX9, also have a C-terminal coiled region. SNX9 additionally has an N-terminal SH3 (Src homology 3) domain. Here we have investigated the cellular localization of SNX9 and the potential role it plays in insulin action. SNX9 had a cytosolic and punctate distribution, consistent with endosomal and cytosolic localization, in 3T3L1 adipocytes. It was excluded from the nucleus. The SH3 domain was responsible, at least in part, for the membrane localization of SNX9, since expression of an SH3-domain-deleted GFP (green fluorescent protein)-SNX9 fusion protein in HEK293T cells rendered the protein cytosolic. Membrane localization may also be attributed in part to the PX domain, since in vitro phospholipid binding studies demonstrated SNX9 binding to polyphosphoinositides. Insulin induced movement of SNX9 to membrane fractions from the cytosol. A GST (glutathione S-transferase)-SNX9 fusion protein was associated with IGF1 (insulin-like growth factor 1) and insulin receptors in vitro. A GFP-SNX9 fusion protein, overexpressed in 3T3L1 adipocytes, co-immunoprecipitated with insulin receptors. Furthermore, overexpression of this GFP-SNX9 fusion protein in CHOT cells decreased insulin binding, consistent with a role for SNX9 in the trafficking of insulin receptors. Microinjection of 3T3L1 cells with an antibody against SNX9 inhibited stimulation by insulin of GLUT4 translocation. These results support the involvement of SNX9 in insulin action, via an influence on the processing/trafficking of insulin receptors. A secondary role in regulation of the cellular processing, transport and/or subcellular localization of GLUT4 is also suggested.

Full Text

The Full Text of this article is available as a PDF (312.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bravo J., Karathanassis D., Pacold C. M., Pacold M. E., Ellson C. D., Anderson K. E., Butler P. J., Lavenir I., Perisic O., Hawkins P. T. The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol Cell. 2001 Oct;8(4):829–839. doi: 10.1016/s1097-2765(01)00372-0. [DOI] [PubMed] [Google Scholar]
  2. Chiang S. H., Baumann C. A., Kanzaki M., Thurmond D. C., Watson R. T., Neudauer C. L., Macara I. G., Pessin J. E., Saltiel A. R. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature. 2001 Apr 19;410(6831):944–948. doi: 10.1038/35073608. [DOI] [PubMed] [Google Scholar]
  3. Chin L. S., Raynor M. C., Wei X., Chen H. Q., Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem. 2000 Dec 7;276(10):7069–7078. doi: 10.1074/jbc.M004129200. [DOI] [PubMed] [Google Scholar]
  4. Deak M., Casamayor A., Currie R. A., Downes C. P., Alessi D. R. Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Lett. 1999 May 28;451(3):220–226. doi: 10.1016/s0014-5793(99)00556-6. [DOI] [PubMed] [Google Scholar]
  5. Del Vecchio R. L., Pilch P. F. Phosphatidylinositol 4-kinase is a component of glucose transporter (GLUT 4)-containing vesicles. J Biol Chem. 1991 Jul 15;266(20):13278–13283. [PubMed] [Google Scholar]
  6. Ebina Y., Edery M., Ellis L., Standring D., Beaudoin J., Roth R. A., Rutter W. J. Expression of a functional human insulin receptor from a cloned cDNA in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8014–8018. doi: 10.1073/pnas.82.23.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ellis L., Clauser E., Morgan D. O., Edery M., Roth R. A., Rutter W. J. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell. 1986 Jun 6;45(5):721–732. doi: 10.1016/0092-8674(86)90786-5. [DOI] [PubMed] [Google Scholar]
  8. Ellson C. D., Gobert-Gosse S., Anderson K. E., Davidson K., Erdjument-Bromage H., Tempst P., Thuring J. W., Cooper M. A., Lim Z. Y., Holmes A. B. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nat Cell Biol. 2001 Jul;3(7):679–682. doi: 10.1038/35083076. [DOI] [PubMed] [Google Scholar]
  9. Emoto M., Langille S. E., Czech M. P. A role for kinesin in insulin-stimulated GLUT4 glucose transporter translocation in 3T3-L1 adipocytes. J Biol Chem. 2001 Jan 5;276(14):10677–10682. doi: 10.1074/jbc.M010785200. [DOI] [PubMed] [Google Scholar]
  10. Ganderton R. H., Stanley K. K., Field C. E., Coghlan M. P., Soos M. A., Siddle K. A monoclonal anti-peptide antibody reacting with the insulin receptor beta-subunit. Characterization of the antibody and its epitope and use in immunoaffinity purification of intact receptors. Biochem J. 1992 Nov 15;288(Pt 1):195–205. doi: 10.1042/bj2880195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haft C. R., de la Luz Sierra M., Barr V. A., Haft D. H., Taylor S. I. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol Cell Biol. 1998 Dec;18(12):7278–7287. doi: 10.1128/mcb.18.12.7278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Higgs H. N., Blanchoin L., Pollard T. D. Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry. 1999 Nov 16;38(46):15212–15222. doi: 10.1021/bi991843+. [DOI] [PubMed] [Google Scholar]
  13. Higgs H. N., Pollard T. D. Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J Cell Biol. 2000 Sep 18;150(6):1311–1320. doi: 10.1083/jcb.150.6.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Howard L., Nelson K. K., Maciewicz R. A., Blobel C. P. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J Biol Chem. 1999 Oct 29;274(44):31693–31699. doi: 10.1074/jbc.274.44.31693. [DOI] [PubMed] [Google Scholar]
  15. Jiang Zhen Y., Chawla Anil, Bose Avirup, Way Michael, Czech Michael P. A phosphatidylinositol 3-kinase-independent insulin signaling pathway to N-WASP/Arp2/3/F-actin required for GLUT4 glucose transporter recycling. J Biol Chem. 2001 Nov 1;277(1):509–515. doi: 10.1074/jbc.M108280200. [DOI] [PubMed] [Google Scholar]
  16. Kaburagi Y., Momomura K., Yamamoto-Honda R., Tobe K., Tamori Y., Sakura H., Akanuma Y., Yazaki Y., Kadowaki T. Site-directed mutagenesis of the juxtamembrane domain of the human insulin receptor. J Biol Chem. 1993 Aug 5;268(22):16610–16622. [PubMed] [Google Scholar]
  17. Kanai F., Liu H., Field S. J., Akbary H., Matsuo T., Brown G. E., Cantley L. C., Yaffe M. B. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol. 2001 Jul;3(7):675–678. doi: 10.1038/35083070. [DOI] [PubMed] [Google Scholar]
  18. Kandror K. V., Pilch P. F. Multiple endosomal recycling pathways in rat adipose cells. Biochem J. 1998 May 1;331(Pt 3):829–835. doi: 10.1042/bj3310829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kanzaki M., Pessin J. E. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J Biol Chem. 2001 Sep 6;276(45):42436–42444. doi: 10.1074/jbc.M108297200. [DOI] [PubMed] [Google Scholar]
  20. Kavran J. M., Klein D. E., Lee A., Falasca M., Isakoff S. J., Skolnik E. Y., Lemmon M. A. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem. 1998 Nov 13;273(46):30497–30508. doi: 10.1074/jbc.273.46.30497. [DOI] [PubMed] [Google Scholar]
  21. Khayat Z. A., Tong P., Yaworsky K., Bloch R. J., Klip A. Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci. 2000 Jan;113(Pt 2):279–290. doi: 10.1242/jcs.113.2.279. [DOI] [PubMed] [Google Scholar]
  22. Kristiansen S., Ramlal T., Klip A. Phosphatidylinositol 4-kinase, but not phosphatidylinositol 3-kinase, is present in GLUT4-containing vesicles isolated from rat skeletal muscle. Biochem J. 1998 Oct 15;335(Pt 2):351–356. doi: 10.1042/bj3350351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kupriyanova Tatyana A., Kandror Vera, Kandror Konstantin V. Isolation and characterization of the two major intracellular Glut4 storage compartments. J Biol Chem. 2002 Jan 8;277(11):9133–9138. doi: 10.1074/jbc.M106999200. [DOI] [PubMed] [Google Scholar]
  24. Kurten R. C., Cadena D. L., Gill G. N. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science. 1996 May 17;272(5264):1008–1010. doi: 10.1126/science.272.5264.1008. [DOI] [PubMed] [Google Scholar]
  25. Lammers R., Gray A., Schlessinger J., Ullrich A. Differential signalling potential of insulin- and IGF-1-receptor cytoplasmic domains. EMBO J. 1989 May;8(5):1369–1375. doi: 10.1002/j.1460-2075.1989.tb03517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Macaulay S. L., Hewish D. R., Gough K. H., Stoichevska V., MacPherson S. F., Jagadish M., Ward C. W. Functional studies in 3T3L1 cells support a role for SNARE proteins in insulin stimulation of GLUT4 translocation. Biochem J. 1997 May 15;324(Pt 1):217–224. doi: 10.1042/bj3240217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marsh B. J., Alm R. A., McIntosh S. R., James D. E. Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes. J Cell Biol. 1995 Sep;130(5):1081–1091. doi: 10.1083/jcb.130.5.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miki H., Miura K., Takenawa T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 1996 Oct 1;15(19):5326–5335. [PMC free article] [PubMed] [Google Scholar]
  29. Olefsky J. M. Mechanisms of the ability of insulin to activate the glucose-transport system in rat adipocytes. Biochem J. 1978 Apr 15;172(1):137–145. doi: 10.1042/bj1720137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Omata W., Shibata H., Li L., Takata K., Kojima I. Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes. Biochem J. 2000 Mar 1;346(Pt 2):321–328. [PMC free article] [PubMed] [Google Scholar]
  31. Parks W. T., Frank D. B., Huff C., Renfrew Haft C., Martin J., Meng X., de Caestecker M. P., McNally J. G., Reddi A., Taylor S. I. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-beta family of receptor serine-threonine kinases. J Biol Chem. 2001 Mar 8;276(22):19332–19339. doi: 10.1074/jbc.M100606200. [DOI] [PubMed] [Google Scholar]
  32. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392–8396. doi: 10.1073/pnas.90.18.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Phillips S. A., Barr V. A., Haft D. H., Taylor S. I., Haft C. R. Identification and characterization of SNX15, a novel sorting nexin involved in protein trafficking. J Biol Chem. 2000 Nov 20;276(7):5074–5084. doi: 10.1074/jbc.M004671200. [DOI] [PubMed] [Google Scholar]
  34. Piper R. C., Hess L. J., James D. E. Differential sorting of two glucose transporters expressed in insulin-sensitive cells. Am J Physiol. 1991 Mar;260(3 Pt 1):C570–C580. doi: 10.1152/ajpcell.1991.260.3.C570. [DOI] [PubMed] [Google Scholar]
  35. Qualmann B., Kelly R. B. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol. 2000 Mar 6;148(5):1047–1062. doi: 10.1083/jcb.148.5.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Robinson L. J., James D. E. Insulin-regulated sorting of glucose transporters in 3T3-L1 adipocytes. Am J Physiol. 1992 Aug;263(2 Pt 1):E383–E393. doi: 10.1152/ajpendo.1992.263.2.E383. [DOI] [PubMed] [Google Scholar]
  37. Robinson L. J., Pang S., Harris D. S., Heuser J., James D. E. Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP insulin, and GTP gamma S and localization of GLUT4 to clathrin lattices. J Cell Biol. 1992 Jun;117(6):1181–1196. doi: 10.1083/jcb.117.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rohatgi R., Nollau P., Ho H. Y., Kirschner M. W., Mayer B. J. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem. 2001 May 4;276(28):26448–26452. doi: 10.1074/jbc.M103856200. [DOI] [PubMed] [Google Scholar]
  39. Song X., Xu W., Zhang A., Huang G., Liang X., Virbasius J. V., Czech M. P., Zhou G. W. Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry. 2001 Jul 31;40(30):8940–8944. doi: 10.1021/bi0155100. [DOI] [PubMed] [Google Scholar]
  40. Soos M. A., Field C. E., Lammers R., Ullrich A., Zhang B., Roth R. A., Andersen A. S., Kjeldsen T., Siddle K. A panel of monoclonal antibodies for the type I insulin-like growth factor receptor. Epitope mapping, effects on ligand binding, and biological activity. J Biol Chem. 1992 Jun 25;267(18):12955–12963. [PubMed] [Google Scholar]
  41. Surmacz E., Nugent P., Pietrzkowski Z., Baserga R. The role of the IGF1 receptor in the regulation of cdc2 mRNA levels in fibroblasts. Exp Cell Res. 1992 Apr;199(2):275–278. doi: 10.1016/0014-4827(92)90435-b. [DOI] [PubMed] [Google Scholar]
  42. Taylor R., Soos M. A., Wells A., Argyraki M., Siddle K. Insulin-like and insulin-inhibitory effects of monoclonal antibodies for different epitopes on the human insulin receptor. Biochem J. 1987 Feb 15;242(1):123–129. doi: 10.1042/bj2420123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Teasdale R. D., Loci D., Houghton F., Karlsson L., Gleeson P. A. A large family of endosome-localized proteins related to sorting nexin 1. Biochem J. 2001 Aug 15;358(Pt 1):7–16. doi: 10.1042/0264-6021:3580007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tellam J. T., Macaulay S. L., McIntosh S., Hewish D. R., Ward C. W., James D. E. Characterization of Munc-18c and syntaxin-4 in 3T3-L1 adipocytes. Putative role in insulin-dependent movement of GLUT-4. J Biol Chem. 1997 Mar 7;272(10):6179–6186. doi: 10.1074/jbc.272.10.6179. [DOI] [PubMed] [Google Scholar]
  45. Tong P., Khayat Z. A., Huang C., Patel N., Ueyama A., Klip A. Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J Clin Invest. 2001 Aug;108(3):371–381. doi: 10.1172/JCI12348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Virbasius J. V., Song X., Pomerleau D. P., Zhan Y., Zhou G. W., Czech M. P. Activation of the Akt-related cytokine-independent survival kinase requires interaction of its phox domain with endosomal phosphatidylinositol 3-phosphate. Proc Natl Acad Sci U S A. 2001 Oct 23;98(23):12908–12913. doi: 10.1073/pnas.221352898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Worby C. A., Simonson-Leff N., Clemens J. C., Kruger R. P., Muda M., Dixon J. E. The sorting nexin, DSH3PX1, connects the axonal guidance receptor, Dscam, to the actin cytoskeleton. J Biol Chem. 2001 Sep 6;276(45):41782–41789. doi: 10.1074/jbc.M107080200. [DOI] [PubMed] [Google Scholar]
  48. Worby Carolyn A., Simonson-Leff Nancy, Clemens James C., Huddler Donald, Jr, Muda Marco, Dixon Jack E. Drosophila Ack targets its substrate, the sorting nexin DSH3PX1, to a protein complex involved in axonal guidance. J Biol Chem. 2001 Dec 28;277(11):9422–9428. doi: 10.1074/jbc.M110172200. [DOI] [PubMed] [Google Scholar]
  49. Xu Y., Hortsman H., Seet L., Wong S. H., Hong W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat Cell Biol. 2001 Jul;3(7):658–666. doi: 10.1038/35083051. [DOI] [PubMed] [Google Scholar]
  50. Yu J. W., Lemmon M. A. All phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J Biol Chem. 2001 Sep 13;276(47):44179–44184. doi: 10.1074/jbc.M108811200. [DOI] [PubMed] [Google Scholar]
  51. Zhong Qi, Lazar Cheri S., Tronchère Hélène, Sato Trey, Meerloo Timo, Yeo Michele, Songyang Zhou, Emr Scott D., Gill Gordon N. Endosomal localization and function of sorting nexin 1. Proc Natl Acad Sci U S A. 2002 May 7;99(10):6767–6772. doi: 10.1073/pnas.092142699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zigmond S. H. How WASP regulates actin polymerization. J Cell Biol. 2000 Sep 18;150(6):F117–F120. doi: 10.1083/jcb.150.6.f117. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES