Abstract
Bcl-B protein is an anti-apoptotic member of the Bcl-2 family protein that contains all the four BH (Bcl-2 homology) domains (BH1, BH2, BH3 and BH4) and a predicted C-terminal transmembrane domain. Our previous results showed that Bcl-B binds Bax and suppresses apoptosis induced by over-expression of Bax; however, Bcl-B does not bind or suppress Bak. To explore the molecular basis for the differential binding and suppression of Bax and Bak, we studied the BH3 dimerization domains of Bax and Bak. Chimeric mutants of Bax and Bak were generated that swapped the BH3 domains of these pro-apoptotic proteins. Bcl-B associated with and blocked apoptosis induced by mutant Bak containing the BH3 domain of Bax, but not mutant Bax containing the BH3 domain of Bak. In contrast, Bcl-X(L) protein bound and suppressed apoptosis induction by Bax, Bak and both BH3-domain chimeras. A strong correlation between binding and apoptosis suppression was also obtained using a series of alanine substitutions spanning the length of the Bax BH3 domain to identify critical residues for Bcl-B binding. Conversely, using structure-based modelling to design mutations in the BH3-binding pocket of Bcl-B, we produced two Bcl-B mutants (Leu86-->Ala and Arg96-->Gln) that failed to bind Bax and that also were unable to suppress apoptosis induced by Bax over-expression. In contrast, other Bcl-B mutants that still bound Bax retained protective activity against Bax-induced cell death, thus serving as a control. We conclude that, in contrast with some other anti-apoptotic Bcl-2-family proteins, a strong correlation exists for Bcl-B between binding to pro-apoptotic multidomain Bcl-2 family proteins and functional apoptosis suppression.
Full Text
The Full Text of this article is available as a PDF (220.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams J. M., Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998 Aug 28;281(5381):1322–1326. doi: 10.1126/science.281.5381.1322. [DOI] [PubMed] [Google Scholar]
- Aouacheria A., Arnaud E., Venet S., Lalle P., Gouy M., Rigal D., Gillet G. Nrh, a human homologue of Nr-13 associates with Bcl-Xs and is an inhibitor of apoptosis. Oncogene. 2001 Sep 13;20(41):5846–5855. doi: 10.1038/sj.onc.1204740. [DOI] [PubMed] [Google Scholar]
- Chao D. T., Korsmeyer S. J. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16:395–419. doi: 10.1146/annurev.immunol.16.1.395. [DOI] [PubMed] [Google Scholar]
- Dandliker W. B., Hsu M. L., Levin J., Rao B. R. Equilibrium and kinetic inhibition assays based upon fluorescence polarization. Methods Enzymol. 1981;74(Pt 100):3–28. doi: 10.1016/0076-6879(81)74003-5. [DOI] [PubMed] [Google Scholar]
- Deckwerth T. L., Elliott J. L., Knudson C. M., Johnson E. M., Jr, Snider W. D., Korsmeyer S. J. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron. 1996 Sep;17(3):401–411. doi: 10.1016/s0896-6273(00)80173-7. [DOI] [PubMed] [Google Scholar]
- Degterev A., Lugovskoy A., Cardone M., Mulley B., Wagner G., Mitchison T., Yuan J. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol. 2001 Feb;3(2):173–182. doi: 10.1038/35055085. [DOI] [PubMed] [Google Scholar]
- Deng Yibin, Lin Yahong, Wu Xiangwei. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 2002 Jan 1;16(1):33–45. doi: 10.1101/gad.949602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deveraux Q. L., Takahashi R., Salvesen G. S., Reed J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997 Jul 17;388(6639):300–304. doi: 10.1038/40901. [DOI] [PubMed] [Google Scholar]
- Green D. R. Apoptotic pathways: the roads to ruin. Cell. 1998 Sep 18;94(6):695–698. doi: 10.1016/s0092-8674(00)81728-6. [DOI] [PubMed] [Google Scholar]
- Inohara N., Gourley T. S., Carrio R., Muñiz M., Merino J., Garcia I., Koseki T., Hu Y., Chen S., Núez G. Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J Biol Chem. 1998 Dec 4;273(49):32479–32486. doi: 10.1074/jbc.273.49.32479. [DOI] [PubMed] [Google Scholar]
- Jaroszewski L., Rychlewski L., Reed J. C., Godzik A. ATP-activated oligomerization as a mechanism for apoptosis regulation: fold and mechanism prediction for CED-4. Proteins. 2000 May 15;39(3):197–203. doi: 10.1002/(sici)1097-0134(20000515)39:3<197::aid-prot10>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
- Jürgensmeier J. M., Krajewski S., Armstrong R. C., Wilson G. M., Oltersdorf T., Fritz L. C., Reed J. C., Ottilie S. Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol Biol Cell. 1997 Feb;8(2):325–339. doi: 10.1091/mbc.8.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ke N., Godzik A., Reed J. C. Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak. J Biol Chem. 2001 Feb 21;276(16):12481–12484. doi: 10.1074/jbc.C000871200. [DOI] [PubMed] [Google Scholar]
- Kelekar A., Thompson C. B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 1998 Aug;8(8):324–330. doi: 10.1016/s0962-8924(98)01321-x. [DOI] [PubMed] [Google Scholar]
- Knudson C. M., Johnson G. M., Lin Y., Korsmeyer S. J. Bax accelerates tumorigenesis in p53-deficient mice. Cancer Res. 2001 Jan 15;61(2):659–665. [PubMed] [Google Scholar]
- Knudson C. M., Tung K. S., Tourtellotte W. G., Brown G. A., Korsmeyer S. J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 1995 Oct 6;270(5233):96–99. doi: 10.1126/science.270.5233.96. [DOI] [PubMed] [Google Scholar]
- Krajewski S., Blomqvist C., Franssila K., Krajewska M., Wasenius V. M., Niskanen E., Nordling S., Reed J. C. Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res. 1995 Oct 1;55(19):4471–4478. [PubMed] [Google Scholar]
- Krajewski S., Krajewska M., Reed J. C. Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res. 1996 Jun 15;56(12):2849–2855. [PubMed] [Google Scholar]
- Krajewski S., Krajewska M., Shabaik A., Miyashita T., Wang H. G., Reed J. C. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol. 1994 Dec;145(6):1323–1336. [PMC free article] [PubMed] [Google Scholar]
- LeBlanc Heidi, Lawrence David, Varfolomeev Eugene, Totpal Klara, Morlan John, Schow Peter, Fong Sharon, Schwall Ralph, Sinicropi Dominick, Ashkenazi Avi. Tumor-cell resistance to death receptor--induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med. 2002 Mar;8(3):274–281. doi: 10.1038/nm0302-274. [DOI] [PubMed] [Google Scholar]
- Lee R., Chen J., Matthews C. P., McDougall J. K., Neiman P. E. Characterization of NR13-related human cell death regulator, Boo/Diva, in normal and cancer tissues. Biochim Biophys Acta. 2001 Sep 21;1520(3):187–194. doi: 10.1016/s0167-4781(01)00268-8. [DOI] [PubMed] [Google Scholar]
- Lindsten T., Ross A. J., King A., Zong W. X., Rathmell J. C., Shiels H. A., Ulrich E., Waymire K. G., Mahar P., Frauwirth K. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell. 2000 Dec;6(6):1389–1399. doi: 10.1016/s1097-2765(00)00136-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikhailov V., Mikhailova M., Pulkrabek D. J., Dong Z., Venkatachalam M. A., Saikumar P. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem. 2001 Feb 20;276(21):18361–18374. doi: 10.1074/jbc.M100655200. [DOI] [PubMed] [Google Scholar]
- Muchmore S. W., Sattler M., Liang H., Meadows R. P., Harlan J. E., Yoon H. S., Nettesheim D., Chang B. S., Thompson C. B., Wong S. L. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature. 1996 May 23;381(6580):335–341. doi: 10.1038/381335a0. [DOI] [PubMed] [Google Scholar]
- Naik P., Karrim J., Hanahan D. The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev. 1996 Sep 1;10(17):2105–2116. doi: 10.1101/gad.10.17.2105. [DOI] [PubMed] [Google Scholar]
- Petros A. M., Medek A., Nettesheim D. G., Kim D. H., Yoon H. S., Swift K., Matayoshi E. D., Oltersdorf T., Fesik S. W. Solution structure of the antiapoptotic protein bcl-2. Proc Natl Acad Sci U S A. 2001 Feb 27;98(6):3012–3017. doi: 10.1073/pnas.041619798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raffo A. J., Perlman H., Chen M. W., Day M. L., Streitman J. S., Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 1995 Oct 1;55(19):4438–4445. [PubMed] [Google Scholar]
- Reed J. C. Double identity for proteins of the Bcl-2 family. Nature. 1997 Jun 19;387(6635):773–776. doi: 10.1038/42867. [DOI] [PubMed] [Google Scholar]
- Reed J. C. Mechanisms of apoptosis. Am J Pathol. 2000 Nov;157(5):1415–1430. doi: 10.1016/S0002-9440(10)64779-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed J. C. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol. 1995 Nov;7(6):541–546. doi: 10.1097/00001622-199511000-00012. [DOI] [PubMed] [Google Scholar]
- Reed John C. Apoptosis-targeted therapies for cancer. Cancer Cell. 2003 Jan;3(1):17–22. doi: 10.1016/s1535-6108(02)00241-6. [DOI] [PubMed] [Google Scholar]
- Russell Helen R., Lee Youngsoo, Miller Heather L., Zhao Jingfeng, McKinnon Peter J. Murine ovarian development is not affected by inactivation of the bcl-2 family member diva. Mol Cell Biol. 2002 Oct;22(19):6866–6870. doi: 10.1128/MCB.22.19.6866-6870.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
- Sattler M., Liang H., Nettesheim D., Meadows R. P., Harlan J. E., Eberstadt M., Yoon H. S., Shuker S. B., Chang B. S., Minn A. J. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science. 1997 Feb 14;275(5302):983–986. doi: 10.1126/science.275.5302.983. [DOI] [PubMed] [Google Scholar]
- Simonian P. L., Grillot D. A., Nuñez G. Bak can accelerate chemotherapy-induced cell death independently of its heterodimerization with Bcl-XL and Bcl-2. Oncogene. 1997 Oct 9;15(15):1871–1875. doi: 10.1038/sj.onc.1201350. [DOI] [PubMed] [Google Scholar]
- Song Q., Kuang Y., Dixit V. M., Vincenz C. Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J. 1999 Jan 4;18(1):167–178. doi: 10.1093/emboj/18.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki M., Youle R. J., Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell. 2000 Nov 10;103(4):645–654. doi: 10.1016/s0092-8674(00)00167-7. [DOI] [PubMed] [Google Scholar]
- Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
- Tzung S. P., Kim K. M., Basañez G., Giedt C. D., Simon J., Zimmerberg J., Zhang K. Y., Hockenbery D. M. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol. 2001 Feb;3(2):183–191. doi: 10.1038/35055095. [DOI] [PubMed] [Google Scholar]
- Vakser I. A., Matar O. G., Lam C. F. A systematic study of low-resolution recognition in protein--protein complexes. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8477–8482. doi: 10.1073/pnas.96.15.8477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J. L., Liu D., Zhang Z. J., Shan S., Han X., Srinivasula S. M., Croce C. M., Alnemri E. S., Huang Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7124–7129. doi: 10.1073/pnas.97.13.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K., Gross A., Waksman G., Korsmeyer S. J. Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing. Mol Cell Biol. 1998 Oct;18(10):6083–6089. doi: 10.1128/mcb.18.10.6083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei M. C., Zong W. X., Cheng E. H., Lindsten T., Panoutsakopoulou V., Ross A. J., Roth K. A., MacGregor G. R., Thompson C. B., Korsmeyer S. J. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001 Apr 27;292(5517):727–730. doi: 10.1126/science.1059108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zha H., Aimé-Sempé C., Sato T., Reed J. C. Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem. 1996 Mar 29;271(13):7440–7444. doi: 10.1074/jbc.271.13.7440. [DOI] [PubMed] [Google Scholar]
- Zha H., Reed J. C. Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. J Biol Chem. 1997 Dec 12;272(50):31482–31488. doi: 10.1074/jbc.272.50.31482. [DOI] [PubMed] [Google Scholar]
- Zhang Haichao, Nimmer Paul, Rosenberg Saul H., Ng Shi-Chung, Joseph Mary. Development of a high-throughput fluorescence polarization assay for Bcl-x(L). Anal Biochem. 2002 Aug 1;307(1):70–75. doi: 10.1016/s0003-2697(02)00028-3. [DOI] [PubMed] [Google Scholar]