Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 15;376(Pt 1):159–168. doi: 10.1042/BJ20030336

Fyn is required for oxidative- and hyperosmotic-stress-induced tyrosine phosphorylation of caveolin-1.

Amy R Sanguinetti 1, Haiming Cao 1, Cynthia Corley Mastick 1
PMCID: PMC1223754  PMID: 12921535

Abstract

Caveolin-1 is phosphorylated on Tyr(14) in response to both oxidative and hyperosmotic stress. In the present paper, we show that this phosphorylation requires activation of the Src family kinase Fyn. Stress-induced caveolin phosphorylation was abolished by three Src kinase inhibitors, SU6656, PP2 and PD180970, and was not observed in fibroblasts derived from a Src, Yes and Fyn triple-knockout mouse (SYF-/-). Using cell lines derived from single-kinase-knockout mice (Src-/-, Yes-/- and Fyn-/-), we show that expression of Fyn, but not Src or Yes, is required for stress-induced caveolin phosphorylation. Heterologous expression of Fyn in the SYF-/- and Fyn-/- cells was sufficient to reconstitute stress-induced caveolin phosphorylation, and overexpression of Fyn in wild-type cells induced hyperphosphorylation of caveolin. Fyn was autophosphorylated following oxidative stress, verifying activation of this kinase. Interestingly, there was a concomitant increase in the phosphorylation of Fyn on its Csk (C-terminal Src kinase) site, indicating feedback inhibition. Csk binds to phosphocaveolin [Cao, Courchesne and Mastick (2002) J. Biol. Chem. 277, 8771-8774] and should phosphorylate any co-localized Src-family kinases. Oxidative-stress-induced phosphorylation of caveolin-1 also requires expression of Abl [Sanguinetti and Mastick (2003) Cell Signal. 15, 289-298]. Using inhibitors and cells derived from knockout mice, we verified a requirement for both Abl and Fyn in stress-induced caveolin phosphorylation in a single cell type. Our data suggest a novel mechanism for attenuation of Src-kinase activity by Abl: stable tyrosine phosphorylation of a scaffolding protein, caveolin, and recruitment of Csk. Paxillin, a substrate of both Abl and Src, organizes a similar regulatory complex.

Full Text

The Full Text of this article is available as a PDF (309.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe J. i., Takahashi M., Ishida M., Lee J. D., Berk B. C. c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1. J Biol Chem. 1997 Aug 15;272(33):20389–20394. doi: 10.1074/jbc.272.33.20389. [DOI] [PubMed] [Google Scholar]
  2. Abe J., Berk B. C. Fyn and JAK2 mediate Ras activation by reactive oxygen species. J Biol Chem. 1999 Jul 23;274(30):21003–21010. doi: 10.1074/jbc.274.30.21003. [DOI] [PubMed] [Google Scholar]
  3. Abe J., Okuda M., Huang Q., Yoshizumi M., Berk B. C. Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J Biol Chem. 2000 Jan 21;275(3):1739–1748. doi: 10.1074/jbc.275.3.1739. [DOI] [PubMed] [Google Scholar]
  4. Aikawa R., Komuro I., Yamazaki T., Zou Y., Kudoh S., Tanaka M., Shiojima I., Hiroi Y., Yazaki Y. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest. 1997 Oct 1;100(7):1813–1821. doi: 10.1172/JCI119709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alland L., Peseckis S. M., Atherton R. E., Berthiaume L., Resh M. D. Dual myristylation and palmitylation of Src family member p59fyn affects subcellular localization. J Biol Chem. 1994 Jun 17;269(24):16701–16705. [PubMed] [Google Scholar]
  6. Aoki T., Nomura R., Fujimoto T. Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res. 1999 Dec 15;253(2):629–636. doi: 10.1006/excr.1999.4652. [DOI] [PubMed] [Google Scholar]
  7. Bockholt S. M., Burridge K. An examination of focal adhesion formation and tyrosine phosphorylation in fibroblasts isolated from src-, fyn-, and yes- mice. Cell Adhes Commun. 1995 May;3(2):91–100. doi: 10.3109/15419069509081279. [DOI] [PubMed] [Google Scholar]
  8. Cao Haiming, Courchesne William E., Mastick Cynthia Corley. A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem. 2002 Jan 22;277(11):8771–8774. doi: 10.1074/jbc.C100661200. [DOI] [PubMed] [Google Scholar]
  9. Corley Mastick C., Sanguinetti A. R., Knesek J. H., Mastick G. S., Newcomb L. F. Caveolin-1 and a 29-kDa caveolin-associated protein are phosphorylated on tyrosine in cells expressing a temperature-sensitive v-Abl kinase. Exp Cell Res. 2001 May 15;266(1):142–154. doi: 10.1006/excr.2001.5205. [DOI] [PubMed] [Google Scholar]
  10. Courtneidge S. A., Fumagalli S., Koegl M., Superti-Furga G., Twamley-Stein G. M. The Src family of protein tyrosine kinases: regulation and functions. Dev Suppl. 1993:57–64. [PubMed] [Google Scholar]
  11. Furstoss Olivia, Dorey Karel, Simon Valérie, Barilà Daniela, Superti-Furga Giulio, Roche Serge. c-Abl is an effector of Src for growth factor-induced c-myc expression and DNA synthesis. EMBO J. 2002 Feb 15;21(4):514–524. doi: 10.1093/emboj/21.4.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gertler F. B., Comer A. R., Juang J. L., Ahern S. M., Clark M. J., Liebl E. C., Hoffmann F. M. enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev. 1995 Mar 1;9(5):521–533. doi: 10.1101/gad.9.5.521. [DOI] [PubMed] [Google Scholar]
  13. Gertler F. B., Hill K. K., Clark M. J., Hoffmann F. M. Dosage-sensitive modifiers of Drosophila abl tyrosine kinase function: prospero, a regulator of axonal outgrowth, and disabled, a novel tyrosine kinase substrate. Genes Dev. 1993 Mar;7(3):441–453. doi: 10.1101/gad.7.3.441. [DOI] [PubMed] [Google Scholar]
  14. Gong J. G., Costanzo A., Yang H. Q., Melino G., Kaelin W. G., Jr, Levrero M., Wang J. Y. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature. 1999 Jun 24;399(6738):806–809. doi: 10.1038/21690. [DOI] [PubMed] [Google Scholar]
  15. He T. C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2509–2514. doi: 10.1073/pnas.95.5.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hua Hong, Munk Snezana, Whiteside Catharine I. Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction. Am J Physiol Renal Physiol. 2002 Sep 17;284(2):F303–F312. doi: 10.1152/ajprenal.00127.2002. [DOI] [PubMed] [Google Scholar]
  17. Jakab Martin, Fürst Johannes, Gschwentner Martin, Bottà Guido, Garavaglia Maria-Lisa, Bazzini Claudia, Rodighiero Simona, Meyer Giuliano, Eichmueller Sonja, Wöll Eichmüller. Mechanisms sensing and modulating signals arising from cell swelling. Cell Physiol Biochem. 2002;12(5-6):235–258. doi: 10.1159/000067895. [DOI] [PubMed] [Google Scholar]
  18. Kain K. H., Klemke R. L. Inhibition of cell migration by Abl family tyrosine kinases through uncoupling of Crk-CAS complexes. J Biol Chem. 2001 Jan 19;276(19):16185–16192. doi: 10.1074/jbc.M100095200. [DOI] [PubMed] [Google Scholar]
  19. Kapus A., Di Ciano C., Sun J., Zhan X., Kim L., Wong T. W., Rotstein O. D. Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell-cell contact sites. The role of Fyn and FER kinases. J Biol Chem. 2000 Oct 13;275(41):32289–32298. doi: 10.1074/jbc.M003172200. [DOI] [PubMed] [Google Scholar]
  20. Kapus A., Szászi K., Sun J., Rizoli S., Rotstein O. D. Cell shrinkage regulates Src kinases and induces tyrosine phosphorylation of cortactin, independent of the osmotic regulation of Na+/H+ exchangers. J Biol Chem. 1999 Mar 19;274(12):8093–8102. doi: 10.1074/jbc.274.12.8093. [DOI] [PubMed] [Google Scholar]
  21. Kawabuchi M., Satomi Y., Takao T., Shimonishi Y., Nada S., Nagai K., Tarakhovsky A., Okada M. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature. 2000 Apr 27;404(6781):999–1003. doi: 10.1038/35010121. [DOI] [PubMed] [Google Scholar]
  22. Klinghoffer R. A., Sachsenmaier C., Cooper J. A., Soriano P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 1999 May 4;18(9):2459–2471. doi: 10.1093/emboj/18.9.2459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ko Ben C. B., Lam Amy K. M., Kapus Andras, Fan Lingzhi, Chung Sookja K., Chung Stephen S. M. Fyn and p38 signaling are both required for maximal hypertonic activation of the osmotic response element-binding protein/tonicity-responsive enhancer-binding protein (OREBP/TonEBP). J Biol Chem. 2002 Sep 30;277(48):46085–46092. doi: 10.1074/jbc.M208138200. [DOI] [PubMed] [Google Scholar]
  24. Kumar S., Bharti A., Mishra N. C., Raina D., Kharbanda S., Saxena S., Kufe D. Targeting of the c-Abl tyrosine kinase to mitochondria in the necrotic cell death response to oxidative stress. J Biol Chem. 2001 Feb 28;276(20):17281–17285. doi: 10.1074/jbc.M101414200. [DOI] [PubMed] [Google Scholar]
  25. Kumar Shailendra, Mishra Neerad, Raina Deepak, Saxena Satya, Kufe Donald. Abrogation of the cell death response to oxidative stress by the c-Abl tyrosine kinase inhibitor STI571. Mol Pharmacol. 2003 Feb;63(2):276–282. doi: 10.1124/mol.63.2.276. [DOI] [PubMed] [Google Scholar]
  26. Lee H., Woodman S. E., Engelman J. A., Volonté D., Galbiati F., Kaufman H. L., Lublin D. M., Lisanti M. P. Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem. 2001 Jul 12;276(37):35150–35158. doi: 10.1074/jbc.M104530200. [DOI] [PubMed] [Google Scholar]
  27. Li S., Couet J., Lisanti M. P. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem. 1996 Nov 15;271(46):29182–29190. doi: 10.1074/jbc.271.46.29182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Li S., Seitz R., Lisanti M. P. Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem. 1996 Feb 16;271(7):3863–3868. [PubMed] [Google Scholar]
  29. Martindale Jennifer L., Holbrook Nikki J. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002 Jul;192(1):1–15. doi: 10.1002/jcp.10119. [DOI] [PubMed] [Google Scholar]
  30. Mastick C. C., Brady M. J., Saltiel A. R. Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol. 1995 Jun;129(6):1523–1531. doi: 10.1083/jcb.129.6.1523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mastick C. C., Saltiel A. R. Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem. 1997 Aug 15;272(33):20706–20714. doi: 10.1074/jbc.272.33.20706. [DOI] [PubMed] [Google Scholar]
  32. Mayer B. J. Signal transduction: clamping down on Src activity. Curr Biol. 1997 May 1;7(5):R295–R298. doi: 10.1016/s0960-9822(06)00141-2. [DOI] [PubMed] [Google Scholar]
  33. Newcomb Lisa F., Mastick Cynthia Corley. Src family kinase-dependent phosphorylation of a 29-kDa caveolin-associated protein. Biochem Biophys Res Commun. 2002 Feb 8;290(5):1447–1453. doi: 10.1006/bbrc.2002.6371. [DOI] [PubMed] [Google Scholar]
  34. Nomura R., Fujimoto T. Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol Biol Cell. 1999 Apr;10(4):975–986. doi: 10.1091/mbc.10.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Plattner R., Kadlec L., DeMali K. A., Kazlauskas A., Pendergast A. M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 1999 Sep 15;13(18):2400–2411. doi: 10.1101/gad.13.18.2400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G. Caveolin, a protein component of caveolae membrane coats. Cell. 1992 Feb 21;68(4):673–682. doi: 10.1016/0092-8674(92)90143-z. [DOI] [PubMed] [Google Scholar]
  37. Sanguinetti Amy R., Mastick Cynthia Corley. c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal. 2003 Mar;15(3):289–298. doi: 10.1016/s0898-6568(02)00090-6. [DOI] [PubMed] [Google Scholar]
  38. Shenoy-Scaria A. M., Dietzen D. J., Kwong J., Link D. C., Lublin D. M. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J Cell Biol. 1994 Jul;126(2):353–363. doi: 10.1083/jcb.126.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shishido T., Akagi T., Ouchi T., Georgescu M. M., Langdon W. Y., Hanafusa H. The kinase-deficient Src acts as a suppressor of the Abl kinase for Cbl phosphorylation. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6439–6444. doi: 10.1073/pnas.060030697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sun X., Majumder P., Shioya H., Wu F., Kumar S., Weichselbaum R., Kharbanda S., Kufe D. Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. J Biol Chem. 2000 Jun 9;275(23):17237–17240. doi: 10.1074/jbc.C000099200. [DOI] [PubMed] [Google Scholar]
  41. Sun X., Wu F., Datta R., Kharbanda S., Kufe D. Interaction between protein kinase C delta and the c-Abl tyrosine kinase in the cellular response to oxidative stress. J Biol Chem. 2000 Mar 17;275(11):7470–7473. doi: 10.1074/jbc.275.11.7470. [DOI] [PubMed] [Google Scholar]
  42. Suzaki Yuki, Yoshizumi Masanori, Kagami Shoji, Koyama A. Hajime, Taketani Yutaka, Houchi Hitoshi, Tsuchiya Koichiro, Takeda Eiji, Tamaki Toshiaki. Hydrogen peroxide stimulates c-Src-mediated big mitogen-activated protein kinase 1 (BMK1) and the MEF2C signaling pathway in PC12 cells: potential role in cell survival following oxidative insults. J Biol Chem. 2002 Jan 8;277(11):9614–9621. doi: 10.1074/jbc.M111790200. [DOI] [PubMed] [Google Scholar]
  43. Takeuchi S., Takayama Y., Ogawa A., Tamura K., Okada M. Transmembrane phosphoprotein Cbp positively regulates the activity of the carboxyl-terminal Src kinase, Csk. J Biol Chem. 2000 Sep 22;275(38):29183–29186. doi: 10.1074/jbc.C000326200. [DOI] [PubMed] [Google Scholar]
  44. Turner C. E. Paxillin interactions. J Cell Sci. 2000 Dec;113(Pt 23):4139–4140. doi: 10.1242/jcs.113.23.4139. [DOI] [PubMed] [Google Scholar]
  45. Ushio-Fukai M., Hilenski L., Santanam N., Becker P. L., Ma Y., Griendling K. K., Alexander R. W. Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem. 2001 Oct 3;276(51):48269–48275. doi: 10.1074/jbc.M105901200. [DOI] [PubMed] [Google Scholar]
  46. Van Etten R. A. Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol. 1999 May;9(5):179–186. doi: 10.1016/s0962-8924(99)01549-4. [DOI] [PubMed] [Google Scholar]
  47. Volonté D., Galbiati F., Pestell R. G., Lisanti M. P. Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr(14)) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J Biol Chem. 2000 Nov 27;276(11):8094–8103. doi: 10.1074/jbc.M009245200. [DOI] [PubMed] [Google Scholar]
  48. Yoshizumi M., Abe J., Haendeler J., Huang Q., Berk B. C. Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species. J Biol Chem. 2000 Apr 21;275(16):11706–11712. doi: 10.1074/jbc.275.16.11706. [DOI] [PubMed] [Google Scholar]
  49. Zacharias David A., Violin Jonathan D., Newton Alexandra C., Tsien Roger Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 2002 May 3;296(5569):913–916. doi: 10.1126/science.1068539. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES