Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 15;376(Pt 1):87–95. doi: 10.1042/BJ20030273

Family 18 chitinase-oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A.

Nathan N Aronson Jr 1, Brian A Halloran 1, Mikhail F Alexyev 1, Lauren Amable 1, Jeffry D Madura 1, Lakshminarasimhulu Pasupulati 1, Catherine Worth 1, Patrick Van Roey 1
PMCID: PMC1223757  PMID: 12932195

Abstract

The sizes and anomers of the products formed during the hydrolysis of chitin oligosaccharides by the Family 18 chitinase A (ChiA) from Serratia marcescens were analysed by hydrophilic interaction chromatography using a novel approach in which reactions were performed at 0 degrees C to stabilize the anomer conformations of the initial products. Crystallographic studies of the enzyme, having the structure of the complex of the ChiA E315L (Glu315-->Leu) mutant with a hexasaccharide, show that the oligosaccharide occupies subsites -4 to +2 in the substrate-binding cleft, consistent with the processing of beta-chitin by the release of disaccharide at the reducing end. Products of the hydrolysis of hexa- and penta-saccharides by wild-type ChiA, as well as by two mutants of the residues Trp275 and Phe396 important in binding the substrate at the +1 and +2 sites, show that the substrates only occupy sites -2 to +2 and that additional N -acetyl-D-glucosamines extend beyond the substrate-binding cleft at the reducing end. The subsites -3 and -4 are not used in this four-site binding mode. The explanation for these results is found in the high importance of individual binding sites for the processing of short oligosaccharides compared with the cumulative recognition and processive hydrolysis mechanism used to digest natural beta-chitin.

Full Text

The Full Text of this article is available as a PDF (251.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr B. K., Hsieh Y. L., Ganem B., Wilson D. B. Identification of two functionally different classes of exocellulases. Biochemistry. 1996 Jan 16;35(2):586–592. doi: 10.1021/bi9520388. [DOI] [PubMed] [Google Scholar]
  2. Blackwell J. Structure of beta-chitin or parallel chain systems of poly-beta-(1-4)-N-acetyl-D-glucosamine. Biopolymers. 1969;7(3):281–298. doi: 10.1002/bip.1969.360070302. [DOI] [PubMed] [Google Scholar]
  3. Bortone Kara, Monzingo Arthur F., Ernst Stephen, Robertus Jon D. The structure of an allosamidin complex with the Coccidioides immitis chitinase defines a role for a second acid residue in substrate-assisted mechanism. J Mol Biol. 2002 Jul 5;320(2):293–302. doi: 10.1016/S0022-2836(02)00444-8. [DOI] [PubMed] [Google Scholar]
  4. Brameld K. A., Shrader W. D., Imperiali B., Goddard W. A., 3rd Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors. J Mol Biol. 1998 Jul 31;280(5):913–923. doi: 10.1006/jmbi.1998.1890. [DOI] [PubMed] [Google Scholar]
  5. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  6. Fukamizo T., Hayashi K. Separation and mutarotation of anomers of chitooligosaccharides. J Biochem. 1982 Feb;91(2):619–626. doi: 10.1093/oxfordjournals.jbchem.a133733. [DOI] [PubMed] [Google Scholar]
  7. Fukamizo T., Sasaki C., Schelp E., Bortone K., Robertus J. D. Kinetic properties of chitinase-1 from the fungal pathogen Coccidioides immitis. Biochemistry. 2001 Feb 27;40(8):2448–2454. doi: 10.1021/bi001537s. [DOI] [PubMed] [Google Scholar]
  8. Fusetti Fabrizia, von Moeller Holger, Houston Douglas, Rozeboom Henriette J., Dijkstra Bauke W., Boot Rolf G., Aerts Johannes M. F. G., van Aalten Daan M. F. Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. J Biol Chem. 2002 Apr 17;277(28):25537–25544. doi: 10.1074/jbc.M201636200. [DOI] [PubMed] [Google Scholar]
  9. Henrissat B., Davies G. J. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 2000 Dec;124(4):1515–1519. doi: 10.1104/pp.124.4.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  11. Hollis T., Monzingo A. F., Bortone K., Ernst S., Cox R., Robertus J. D. The X-ray structure of a chitinase from the pathogenic fungus Coccidioides immitis. Protein Sci. 2000 Mar;9(3):544–551. doi: 10.1110/ps.9.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Houston Douglas R., Eggleston Ian, Synstad Bjørnar, Eijsink Vincent G. H., van Aalten Daan M. F. The cyclic dipeptide CI-4 [cyclo-(l-Arg-d-Pro)] inhibits family 18 chitinases by structural mimicry of a reaction intermediate. Biochem J. 2002 Nov 15;368(Pt 1):23–27. doi: 10.1042/BJ20021034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Houston Douglas R., Recklies Anneliese D., Krupa Joanne C., van Aalten Daan M. F. Structure and ligand-induced conformational change of the 39-kDa glycoprotein from human articular chondrocytes. J Biol Chem. 2003 May 29;278(32):30206–30212. doi: 10.1074/jbc.M303371200. [DOI] [PubMed] [Google Scholar]
  14. Houston Douglas R., Shiomi Kazuro, Arai Noriko, Omura Satoshi, Peter Martin G., Turberg Andreas, Synstad Bjørnar, Eijsink Vincent G. H., van Aalten Daan M. F. High-resolution structures of a chitinase complexed with natural product cyclopentapeptide inhibitors: mimicry of carbohydrate substrate. Proc Natl Acad Sci U S A. 2002 Jul 1;99(14):9127–9132. doi: 10.1073/pnas.132060599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Imai Tomoya, Watanabe Takeshi, Yui Toshifumi, Sugiyama Junji. Directional degradation of beta-chitin by chitinase A1 revealed by a novel reducing end labelling technique. FEBS Lett. 2002 Jan 16;510(3):201–205. doi: 10.1016/s0014-5793(01)03249-5. [DOI] [PubMed] [Google Scholar]
  16. Iseli B., Armand S., Boller T., Neuhaus J. M., Henrissat B. Plant chitinases use two different hydrolytic mechanisms. FEBS Lett. 1996 Mar 11;382(1-2):186–188. doi: 10.1016/0014-5793(96)00174-3. [DOI] [PubMed] [Google Scholar]
  17. Keyhani N. O., Roseman S. Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta. 1999 Dec 6;1473(1):108–122. doi: 10.1016/s0304-4165(99)00172-5. [DOI] [PubMed] [Google Scholar]
  18. Koga D., Sasaki Y., Uchiumi Y., Hirai N., Arakane Y., Nagamatsu Y. Purification and characterization of Bombyx mori chitinases. Insect Biochem Mol Biol. 1997 Aug-Sep;27(8-9):757–767. doi: 10.1016/s0965-1748(97)00058-1. [DOI] [PubMed] [Google Scholar]
  19. Kuranda M. J., Robbins P. W. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem. 1991 Oct 15;266(29):19758–19767. [PubMed] [Google Scholar]
  20. Lu Yimin, Zen Kuo-Chang, Muthukrishnan Subbaratnam, Kramer Karl J. Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol. 2002 Nov;32(11):1369–1382. doi: 10.1016/s0965-1748(02)00057-7. [DOI] [PubMed] [Google Scholar]
  21. Minke R., Blackwell J. The structure of alpha-chitin. J Mol Biol. 1978 Apr 5;120(2):167–181. doi: 10.1016/0022-2836(78)90063-3. [DOI] [PubMed] [Google Scholar]
  22. Mohanty Ashok K., Singh Garima, Paramasivam Murugan, Saravanan Kolandaivelu, Jabeen Talat, Sharma Sujata, Yadav Savita, Kaur Punit, Kumar Pravindra, Srinivasan Alagiri. Crystal structure of a novel regulatory 40-kDa mammary gland protein (MGP-40) secreted during involution. J Biol Chem. 2003 Jan 14;278(16):14451–14460. doi: 10.1074/jbc.M208967200. [DOI] [PubMed] [Google Scholar]
  23. Papanikolau Y., Prag G., Tavlas G., Vorgias C. E., Oppenheim A. B., Petratos K. High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry. 2001 Sep 25;40(38):11338–11343. doi: 10.1021/bi010505h. [DOI] [PubMed] [Google Scholar]
  24. Perrakis A., Tews I., Dauter Z., Oppenheim A. B., Chet I., Wilson K. S., Vorgias C. E. Crystal structure of a bacterial chitinase at 2.3 A resolution. Structure. 1994 Dec 15;2(12):1169–1180. doi: 10.1016/s0969-2126(94)00119-7. [DOI] [PubMed] [Google Scholar]
  25. Prag G., Papanikolau Y., Tavlas G., Vorgias C. E., Petratos K., Oppenheim A. B. Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. J Mol Biol. 2000 Jul 14;300(3):611–617. doi: 10.1006/jmbi.2000.3906. [DOI] [PubMed] [Google Scholar]
  26. Rao V., Cui T., Guan C., Van Roey P. Mutations of endo-beta-N-acetylglucosaminidase H active site residueAs sp130 anG glu132: activities and conformations. Protein Sci. 1999 Nov;8(11):2338–2346. doi: 10.1110/ps.8.11.2338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rao V., Guan C., Van Roey P. Crystal structure of endo-beta-N-acetylglucosaminidase H at 1.9 A resolution: active-site geometry and substrate recognition. Structure. 1995 May 15;3(5):449–457. doi: 10.1016/s0969-2126(01)00178-2. [DOI] [PubMed] [Google Scholar]
  28. Sasaki Chiye, Yokoyama Ai, Itoh Yoshifumi, Hashimoto Masayuki, Watanabe Takeshi, Fukamizo Tamo. Comparative study of the reaction mechanism of family 18 chitinases from plants and microbes. J Biochem. 2002 Apr;131(4):557–564. doi: 10.1093/oxfordjournals.jbchem.a003134. [DOI] [PubMed] [Google Scholar]
  29. Shartava A., Monteiro C. A., Bencsath F. A., Schneider K., Chait B. T., Gussio R., Casoria-Scott L. A., Shah A. K., Heuerman C. A., Goodman S. R. A posttranslational modification of beta-actin contributes to the slow dissociation of the spectrin-protein 4.1-actin complex of irreversibly sickled cells. J Cell Biol. 1995 Mar;128(5):805–818. doi: 10.1083/jcb.128.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sugiyama J., Boisset C., Hashimoto M., Watanabe T. Molecular directionality of beta-chitin biosynthesis. J Mol Biol. 1999 Feb 12;286(1):247–255. doi: 10.1006/jmbi.1998.2458. [DOI] [PubMed] [Google Scholar]
  31. Sun Y. J., Chang N. C., Hung S. I., Chang A. C., Chou C. C., Hsiao C. D. The crystal structure of a novel mammalian lectin, Ym1, suggests a saccharide binding site. J Biol Chem. 2001 Feb 15;276(20):17507–17514. doi: 10.1074/jbc.M010416200. [DOI] [PubMed] [Google Scholar]
  32. Terwisscha van Scheltinga A. C., Armand S., Kalk K. H., Isogai A., Henrissat B., Dijkstra B. W. Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry. 1995 Dec 5;34(48):15619–15623. doi: 10.1021/bi00048a003. [DOI] [PubMed] [Google Scholar]
  33. Terwisscha van Scheltinga A. C., Kalk K. H., Beintema J. J., Dijkstra B. W. Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure. 1994 Dec 15;2(12):1181–1189. doi: 10.1016/s0969-2126(94)00120-0. [DOI] [PubMed] [Google Scholar]
  34. Uchiyama T., Katouno F., Nikaidou N., Nonaka T., Sugiyama J., Watanabe T. Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J Biol Chem. 2001 Aug 24;276(44):41343–41349. doi: 10.1074/jbc.M103610200. [DOI] [PubMed] [Google Scholar]
  35. Van Roey P., Rao V., Plummer T. H., Jr, Tarentino A. L. Crystal structure of endo-beta-N-acetylglucosaminidase F1, an alpha/beta-barrel enzyme adapted for a complex substrate. Biochemistry. 1994 Nov 29;33(47):13989–13996. doi: 10.1021/bi00251a005. [DOI] [PubMed] [Google Scholar]
  36. Varela Paloma F., Llera Andrea S., Mariuzza Roy A., Tormo José. Crystal structure of imaginal disc growth factor-2. A member of a new family of growth-promoting glycoproteins from Drosophila melanogaster. J Biol Chem. 2002 Jan 30;277(15):13229–13236. doi: 10.1074/jbc.M110502200. [DOI] [PubMed] [Google Scholar]
  37. Waddling C. A., Plummer T. H., Jr, Tarentino A. L., Van Roey P. Structural basis for the substrate specificity of endo-beta-N-acetylglucosaminidase F(3). Biochemistry. 2000 Jul 11;39(27):7878–7885. doi: 10.1021/bi0001731. [DOI] [PubMed] [Google Scholar]
  38. Watanabe T., Ishibashi A., Ariga Y., Hashimoto M., Nikaidou N., Sugiyama J., Matsumoto T., Nonaka T. Trp122 and Trp134 on the surface of the catalytic domain are essential for crystalline chitin hydrolysis by Bacillus circulans chitinase A1. FEBS Lett. 2001 Apr 6;494(1-2):74–78. doi: 10.1016/s0014-5793(01)02317-1. [DOI] [PubMed] [Google Scholar]
  39. Watanabe T., Kobori K., Miyashita K., Fujii T., Sakai H., Uchida M., Tanaka H. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem. 1993 Sep 5;268(25):18567–18572. [PubMed] [Google Scholar]
  40. van Aalten D. M., Komander D., Synstad B., Gåseidnes S., Peter M. G., Eijsink V. G. Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):8979–8984. doi: 10.1073/pnas.151103798. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES