Abstract
GlcN (glucosamine) is now promoted over the counter for implied treatment of osteoarthritis, ostensibly by stimulating biosynthesis of cartilage chondroitin sulphate. In order to evaluate whether exogenous GlcN has any stimulatory effect, we have incubated mouse chondrocytes with [(35)S]sulphate and various amounts of GlcN, to determine whether any increment in chondroitin [(35)S]sulphate formation occurs. Similarly we have used varying concentrations of [(3)H]GlcN to determine the dilution of incorporation into [(3)H]chondroitin sulphate due to provision of endogenous GlcN by metabolism from glucose at two different glucose concentrations. The incorporation of both (35)S and (3)H was essentially linear over a 5 h time period. We found no stimulation of chondroitin [(35)S]sulphate synthesis at lower concentrations of GlcN, and a significant reduction at higher concentrations. Even at concentrations of [(3)H]GlcN that were greater than could be achieved with standard doses of oral GlcN, there was significant dilution of exogenous GlcN. Furthermore, an artificial acceptor for glycosaminoglycan synthesis in cell culture, 4-methylumbelliferyl beta-D-xyloside, did not modify the provision of GlcN from endogenous sources, even though it stimulated chondroitin sulphate synthesis 4 -5-fold at each GlcN concentration. We conclude that the cells have excess capacity to form maximal amounts of GlcN from glucose so that exogenous GlcN does not stimulate chondroitin sulphate synthesis.
Full Text
The Full Text of this article is available as a PDF (105.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adebowale Abi, Du Jianpin, Liang Zhonming, Leslie James L., Eddington Natalie D. The bioavailability and pharmacokinetics of glucosamine hydrochloride and low molecular weight chondroitin sulfate after single and multiple doses to beagle dogs. Biopharm Drug Dispos. 2002 Sep;23(6):217–225. doi: 10.1002/bdd.315. [DOI] [PubMed] [Google Scholar]
- Aghazadeh-Habashi Ali, Sattari Saeed, Pasutto Franco, Jamali Fakhreddin. Single dose pharmacokinetics and bioavailability of glucosamine in the rat. J Pharm Pharm Sci. 2002 May-Aug;5(2):181–184. [PubMed] [Google Scholar]
- Humphries D. E., Sugumaran G., Silbert J. E. Decreasing sulfation of proteoglycans produced by cultured cells. Methods Enzymol. 1989;179:428–434. doi: 10.1016/0076-6879(89)79143-6. [DOI] [PubMed] [Google Scholar]
- Kim J. J., Conrad H. E. Effect of D-glucosamine concentration on the kinetics of mucopolysaccharide biosynthesis in cultured chick embryo vertebral cartilage. J Biol Chem. 1974 May 25;249(10):3091–3097. [PubMed] [Google Scholar]
- Kleinman H. K., Silbert J. E., Silbert C. K. Heparan sulfate of skin fibroblasts grown in culture. Connect Tissue Res. 1975;4(1):17–23. doi: 10.3109/03008207509152193. [DOI] [PubMed] [Google Scholar]
- Kokenyesi R., Silbert J. E. Immortalized, cloned mouse chondrocytic cells (MC615) produce three different matrix proteoglycans with core-protein-specific chondroitin/dermatan sulphate structures. Biochem J. 1997 Nov 1;327(Pt 3):831–839. doi: 10.1042/bj3270831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mallein-Gerin F., Olsen B. R. Expression of simian virus 40 large T (tumor) oncogene in mouse chondrocytes induces cell proliferation without loss of the differentiated phenotype. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3289–3293. doi: 10.1073/pnas.90.8.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ronca F., Palmieri L., Panicucci P., Ronca G. Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartilage. 1998 May;6 (Suppl A):14–21. doi: 10.1016/s1063-4584(98)80006-x. [DOI] [PubMed] [Google Scholar]
- SILBERT J. E., BROWN D. H. Enzymic synthesis of uridine diphosphate glucosamine and heparin from [14C]glucosamine by a mouse mast-cell tumor. Biochim Biophys Acta. 1961 Dec 23;54:590–592. doi: 10.1016/0006-3002(61)90105-6. [DOI] [PubMed] [Google Scholar]
- SILBERT J. E., HUGHES E. F. ENZYMIC SYNTHESIS OF URIDINE DIPHOSPHATE GLUCOSAMINURONIC ACID. Biochim Biophys Acta. 1964 Nov 1;83:355–357. doi: 10.1016/0926-6526(64)90016-3. [DOI] [PubMed] [Google Scholar]
- Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
- Setnikar I., Palumbo R., Canali S., Zanolo G. Pharmacokinetics of glucosamine in man. Arzneimittelforschung. 1993 Oct;43(10):1109–1113. [PubMed] [Google Scholar]
- Silbert C. K., Palmer M. E., Humphries D. E., Silbert J. E. Production of [3H]hexosamine-labeled proteoglycans by cultures of normal and diabetic skin fibroblasts: dilution of exogenous [3H]glucosamine by endogenous hexosamine from glucose and other sources. Arch Biochem Biophys. 1989 Jan;268(1):393–397. doi: 10.1016/0003-9861(89)90600-0. [DOI] [PubMed] [Google Scholar]
- Silbert J. E., Sugumaran G., Cogburn J. N. Sulphation of proteochondroitin and 4-methylumbelliferyl beta-D-xyloside-chondroitin formed by mouse mastocytoma cells cultured in sulphate-deficient medium. Biochem J. 1993 Nov 15;296(Pt 1):119–126. doi: 10.1042/bj2960119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanagishita M., Salustri A., Hascall V. C. Specific activity of radiolabeled hexosamines in metabolic labeling experiments. Methods Enzymol. 1989;179:435–445. doi: 10.1016/0076-6879(89)79144-8. [DOI] [PubMed] [Google Scholar]
- de Mattei M., Pellati A., Pasello M., de Terlizzi F., Massari L., Gemmati D., Caruso A. High doses of glucosamine-HCl have detrimental effects on bovine articular cartilage explants cultured in vitro. Osteoarthritis Cartilage. 2002 Oct;10(10):816–825. doi: 10.1053/joca.2002.0834. [DOI] [PubMed] [Google Scholar]