Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 1;376(Pt 2):377–381. doi: 10.1042/BJ20030820

Identification of two functional nuclear localization signals in DNase gamma and their roles in its apoptotic DNase activity.

Daisuke Shiokawa 1, Yukari Shika 1, Sei-ichi Tanuma 1
PMCID: PMC1223774  PMID: 12943533

Abstract

Among DNase I family members, only DNase gamma causes DNA fragmentation during apoptosis. However, the molecular basis for this functional feature of DNase gamma is poorly understood. Here we describe the identification of functional NLSs (nuclear localization signals) in DNase gamma and their roles in its apoptotic function. DNase gamma contains two NLSs: a classical bipartite-type NLS (NLS1) located in the N-terminal half, and a short basic domain (NLS2) at the C-terminus. No potential NLSs are found in the primary structures of other DNase I family DNases. Inactivation of either NLS1 or NLS2 causes reduced DNA ladder-producing activity in DNase gamma. Disruption of NLS2 suppresses ladder formation more effectively than disruption of NLS1. DNase gamma doubly mutated in both NLSs is enzymically active, but no longer catalyses apoptotic DNA fragmentation. Although DNase I fails to produce ladder formation during apoptosis, DNase I fused to NLS2 of DNase gamma through its C-terminus is able to catalyse DNA fragmentation in apoptotic cells. These results indicate that the presence of either NLS1 or NLS2 is necessary for the apoptotic function of DNase gamma, and that the most important domain for this function is NLS2. These findings also explain the lack of apoptotic DNase activity in the other DNase I family DNases.

Full Text

The Full Text of this article is available as a PDF (185.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arends M. J., Morris R. G., Wyllie A. H. Apoptosis. The role of the endonuclease. Am J Pathol. 1990 Mar;136(3):593–608. [PMC free article] [PubMed] [Google Scholar]
  2. Boulares A. Hamid, Zoltoski Anna J., Contreras Francisco J., Yakovlev Alexander G., Yoshihara Koichiro, Smulson Mark E. Regulation of DNAS1L3 endonuclease activity by poly(ADP-ribosyl)ation during etoposide-induced apoptosis. Role of poly(ADP-ribose) polymerase-1 cleavage in endonuclease activation. J Biol Chem. 2001 Nov 1;277(1):372–378. doi: 10.1074/jbc.M107738200. [DOI] [PubMed] [Google Scholar]
  3. Chelsky D., Ralph R., Jonak G. Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol Cell Biol. 1989 Jun;9(6):2487–2492. doi: 10.1128/mcb.9.6.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fimia G. M., Gottifredi V., Passananti C., Maione R. Double-stranded internucleosomal cleavage of apoptotic DNA is dependent on the degree of differentiation in muscle cells. J Biol Chem. 1996 Jun 28;271(26):15575–15579. doi: 10.1074/jbc.271.26.15575. [DOI] [PubMed] [Google Scholar]
  5. Liu Q. Y., Ribecco M., Pandey S., Walker P. R., Sikorska M. Apoptosis-related functional features of the DNaseI-like family of nucleases. Ann N Y Acad Sci. 1999;887:60–76. doi: 10.1111/j.1749-6632.1999.tb07922.x. [DOI] [PubMed] [Google Scholar]
  6. Napirei M., Karsunky H., Zevnik B., Stephan H., Mannherz H. G., Möröy T. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet. 2000 Jun;25(2):177–181. doi: 10.1038/76032. [DOI] [PubMed] [Google Scholar]
  7. Nigg E. A. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature. 1997 Apr 24;386(6627):779–787. doi: 10.1038/386779a0. [DOI] [PubMed] [Google Scholar]
  8. Nishikawa A., Gregory W., Frenz J., Cacia J., Kornfeld S. The phosphorylation of bovine DNase I Asn-linked oligosaccharides is dependent on specific lysine and arginine residues. J Biol Chem. 1997 Aug 1;272(31):19408–19412. doi: 10.1074/jbc.272.31.19408. [DOI] [PubMed] [Google Scholar]
  9. Parrish J. E., Ciccodicola A., Wehhert M., Cox G. F., Chen E., Nelson D. L. A muscle-specific DNase I-like gene in human Xq28. Hum Mol Genet. 1995 Sep;4(9):1557–1564. doi: 10.1093/hmg/4.9.1557. [DOI] [PubMed] [Google Scholar]
  10. Pergolizzi R., Appierto V., Bosetti A., DeBellis G. L., Rovida E., Biunno I. Cloning of a gene encoding a DNase I-like endonuclease in the human Xq28 region. Gene. 1996 Feb 12;168(2):267–270. doi: 10.1016/0378-1119(95)00741-5. [DOI] [PubMed] [Google Scholar]
  11. Prunell A., Kornberg R. D., Lutter L., Klug A., Levitt M., Crick F. H. Periodicity of deoxyribonuclease I digestion of chromatin. Science. 1979 May 25;204(4395):855–858. doi: 10.1126/science.441739. [DOI] [PubMed] [Google Scholar]
  12. Robbins J., Dilworth S. M., Laskey R. A., Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell. 1991 Feb 8;64(3):615–623. doi: 10.1016/0092-8674(91)90245-t. [DOI] [PubMed] [Google Scholar]
  13. Rodriguez A. M., Rodin D., Nomura H., Morton C. C., Weremowicz S., Schneider M. C. Identification, localization, and expression of two novel human genes similar to deoxyribonuclease I. Genomics. 1997 Jun 15;42(3):507–513. doi: 10.1006/geno.1997.4748. [DOI] [PubMed] [Google Scholar]
  14. Shak S., Capon D. J., Hellmiss R., Marsters S. A., Baker C. L. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9188–9192. doi: 10.1073/pnas.87.23.9188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shiokawa D., Hirai M., Tanuma S. cDNA cloning of human DNase gamma: chromosomal localization of its gene and enzymatic properties of recombinant protein. Apoptosis. 1998 Mar;3(2):89–95. doi: 10.1023/a:1009692807692. [DOI] [PubMed] [Google Scholar]
  16. Shiokawa D., Iwamatsu A., Tanuma S. Purification, characterization, and amino acid sequencing of DNase gamma from rat spleen. Arch Biochem Biophys. 1997 Oct 1;346(1):15–20. doi: 10.1006/abbi.1997.0275. [DOI] [PubMed] [Google Scholar]
  17. Shiokawa D., Ohyama H., Yamada T., Tanuma S. Purification and properties of DNase gamma from apoptotic rat thymocytes. Biochem J. 1997 Sep 15;326(Pt 3):675–681. doi: 10.1042/bj3260675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shiokawa D., Tanaka M., Kimura T., Hashizume K., Takasawa R., Ohyama H., Fujita K., Yamada T., Tanuma S. Characterization of two DNase gamma-specific monoclonal antibodies and the in situ detection of DNase gamma in the nuclei of apoptotic rat thymocytes. Biochem Biophys Res Commun. 2000 Aug 28;275(2):343–349. doi: 10.1006/bbrc.2000.3249. [DOI] [PubMed] [Google Scholar]
  19. Shiokawa D., Tanuma S. Characterization of human DNase I family endonucleases and activation of DNase gamma during apoptosis. Biochemistry. 2001 Jan 9;40(1):143–152. doi: 10.1021/bi001041a. [DOI] [PubMed] [Google Scholar]
  20. Shiokawa D., Tanuma S. DLAD, a novel mammalian divalent cation-independent endonuclease with homology to DNase II. Nucleic Acids Res. 1999 Oct 15;27(20):4083–4089. doi: 10.1093/nar/27.20.4083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shiokawa D., Tanuma S. Molecular cloning and expression of a cDNA encoding an apoptotic endonuclease DNase gamma. Biochem J. 1998 Jun 15;332(Pt 3):713–720. doi: 10.1042/bj3320713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shiokawa Daisuke, Kobayashi Takanobu, Tanuma Sei-ichi. Involvement of DNase gamma in apoptosis associated with myogenic differentiation of C2C12 cells. J Biol Chem. 2002 Jun 5;277(34):31031–31037. doi: 10.1074/jbc.M204038200. [DOI] [PubMed] [Google Scholar]
  23. Yakovlev A. G., Wang G., Stoica B. A., Simbulan-Rosenthal C. M., Yoshihara K., Smulson M. E. Role of DNAS1L3 in Ca2+- and Mg2+-dependent cleavage of DNA into oligonucleosomal and high molecular mass fragments. Nucleic Acids Res. 1999 May 1;27(9):1999–2005. doi: 10.1093/nar/27.9.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES