Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 1;376(Pt 2):413–422. doi: 10.1042/BJ20030799

The loop between helix 4 and helix 5 in the monocarboxylate transporter MCT1 is important for substrate selection and protein stability.

Sandra Galić 1, Hans-Peter Schneider 1, Angelika Bröer 1, Joachim W Deitmer 1, Stefan Bröer 1
PMCID: PMC1223779  PMID: 12946269

Abstract

Transport of lactate, pyruvate and the ketone bodies acetoacetate and beta-hydroxybutyrate, is mediated in most mammalian cells by members of the monocarboxylate transporter family (SLC16). A conserved signature sequence has been identified in this family, which is located in the loop between helix 4 and helix 5 and extends into helix 5. We have mutated residues in this signature sequence in the rat monocarboxylate transporter (MCT1) to elucidate the significance of this region for monocarboxylate transport. Mutation of R143 and G153 resulted in complete inactivation of the transporter. For the MCT1(G153V) mutant this was explained by a failure to reach the plasma membrane. The lack of transport activity of MCT1(R143Q) could be partially rescued by the conservative exchange R143H. The resulting mutant transporter displayed reduced stability, a decreased V (max) of lactate transport but not of acetate transport, and an increased stereoselectivity. Mutation of K137, K141 and K142 indicated that only K142 played a significant role in the transport mechanism. Mutation of K142 to glutamine resulted in an increase of the K (m) for lactate from 5 mM to 12 mM. In contrast with MCT1(R143H), MCT1(K142Q) was less stereoselective than the wild-type. A mechanism is proposed that includes all critical residues.

Full Text

The Full Text of this article is available as a PDF (248.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson Jeff, Smirnova Irina, Kasho Vladimir, Verner Gillian, Kaback H. Ronald, Iwata So. Structure and mechanism of the lactose permease of Escherichia coli. Science. 2003 Aug 1;301(5633):610–615. doi: 10.1126/science.1088196. [DOI] [PubMed] [Google Scholar]
  2. Bröer S., Bröer A., Schneider H. P., Stegen C., Halestrap A. P., Deitmer J. W. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J. 1999 Aug 1;341(Pt 3):529–535. doi: 10.1042/0264-6021:3410529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bröer S., Rahman B., Pellegri G., Pellerin L., Martin J. L., Verleysdonk S., Hamprecht B., Magistretti P. J. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem. 1997 Nov 28;272(48):30096–30102. doi: 10.1074/jbc.272.48.30096. [DOI] [PubMed] [Google Scholar]
  4. Bröer S., Schneider H. P., Bröer A., Rahman B., Hamprecht B., Deitmer J. W. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J. 1998 Jul 1;333(Pt 1):167–174. doi: 10.1042/bj3330167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bröer Stefan. Xenopus laevis Oocytes. Methods Mol Biol. 2003;227:245–258. doi: 10.1385/1-59259-387-9:245. [DOI] [PubMed] [Google Scholar]
  6. Carpenter L., Halestrap A. P. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J. 1994 Dec 15;304(Pt 3):751–760. doi: 10.1042/bj3040751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chillarón J., Estévez R., Samarzija I., Waldegger S., Testar X., Lang F., Zorzano A., Busch A., Palacín M. An intracellular trafficking defect in type I cystinuria rBAT mutants M467T and M467K. J Biol Chem. 1997 Apr 4;272(14):9543–9549. doi: 10.1074/jbc.272.14.9543. [DOI] [PubMed] [Google Scholar]
  8. De Bruijne A. W., Vreeburg H., Van Steveninck J. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. Biochim Biophys Acta. 1983 Aug 10;732(3):562–568. doi: 10.1016/0005-2736(83)90232-8. [DOI] [PubMed] [Google Scholar]
  9. Deuticke B. Monocarboxylate transport in erythrocytes. J Membr Biol. 1982;70(2):89–103. doi: 10.1007/BF01870219. [DOI] [PubMed] [Google Scholar]
  10. Garcia C. K., Brown M. S., Pathak R. K., Goldstein J. L. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem. 1995 Jan 27;270(4):1843–1849. doi: 10.1074/jbc.270.4.1843. [DOI] [PubMed] [Google Scholar]
  11. Garcia C. K., Goldstein J. L., Pathak R. K., Anderson R. G., Brown M. S. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994 Mar 11;76(5):865–873. doi: 10.1016/0092-8674(94)90361-1. [DOI] [PubMed] [Google Scholar]
  12. Halestrap A. P., Price N. T. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999 Oct 15;343(Pt 2):281–299. [PMC free article] [PubMed] [Google Scholar]
  13. Jung K., Jung H., Colacurcio P., Kaback H. R. Role of glycine residues in the structure and function of lactose permease, an Escherichia coli membrane transport protein. Biochemistry. 1995 Jan 24;34(3):1030–1039. doi: 10.1021/bi00003a038. [DOI] [PubMed] [Google Scholar]
  14. Merickel A., Kaback H. R., Edwards R. H. Charged residues in transmembrane domains II and XI of a vesicular monoamine transporter form a charge pair that promotes high affinity substrate recognition. J Biol Chem. 1997 Feb 28;272(9):5403–5408. doi: 10.1074/jbc.272.9.5403. [DOI] [PubMed] [Google Scholar]
  15. Munsch T., Deitmer J. W. Sodium-bicarbonate cotransport current in identified leech glial cells. J Physiol. 1994 Jan 1;474(1):43–53. doi: 10.1113/jphysiol.1994.sp020001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pierre K., Pellerin L., Debernardi R., Riederer B. M., Magistretti P. J. Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience. 2000;100(3):617–627. doi: 10.1016/s0306-4522(00)00294-3. [DOI] [PubMed] [Google Scholar]
  17. Poole R. C., Sansom C. E., Halestrap A. P. Studies of the membrane topology of the rat erythrocyte H+/lactate cotransporter (MCT1). Biochem J. 1996 Dec 15;320(Pt 3):817–824. doi: 10.1042/bj3200817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Price N. T., Jackson V. N., Halestrap A. P. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J. 1998 Jan 15;329(Pt 2):321–328. doi: 10.1042/bj3290321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rahman B., Schneider H. P., Bröer A., Deitmer J. W., Bröer S. Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1. Biochemistry. 1999 Aug 31;38(35):11577–11584. doi: 10.1021/bi990973f. [DOI] [PubMed] [Google Scholar]
  20. Wilson Marieangela C., Meredith David, Halestrap Andrew P. Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem. 2001 Nov 21;277(5):3666–3672. doi: 10.1074/jbc.M109658200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES