Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 1;376(Pt 2):441–448. doi: 10.1042/BJ20030650

Identification of a minimal promoter sequence for the human N-acetyltransferase Type I gene that binds AP-1 (activator protein 1) and YY-1 (Yin and Yang 1).

Neville J Butcher 1, Ajanthy Arulpragasam 1, Catherine Pope 1, Rodney F Minchin 1
PMCID: PMC1223780  PMID: 12946272

Abstract

Human N -acetyltransferase Type I (NAT1) catalyses the acetylation of many aromatic amine and hydrazine compounds and it has been implicated in the catabolism of folic acid. The enzyme is widely expressed in the body, although there are considerable differences in the level of activity between tissues. A search of the mRNA databases revealed the presence of several NAT1 transcripts in human tissue that appear to be derived from different promoters. Because little is known about NAT1 gene regulation, the present study was undertaken to characterize one of the putative promoter sequences of the NAT1 gene located just upstream of the coding region. We show with reverse-transcriptase PCR that mRNA transcribed from this promoter (Promoter I) is present in a variety of human cell-lines, but not in quiescent peripheral blood mononuclear cells. Using deletion mutant constructs, we identified a 20 bp sequence located 245 bases upstream of the translation start site which was sufficient for basal NAT1 expression. It comprised an AP-1 (activator protein 1)-binding site, flanked on either side by a TCATT motif. Mutational analysis showed that the AP-1 site and the 3' TCATT sequence were necessary for gene expression, whereas the 5' TCATT appeared to attenuate promoter activity. Electromobility shift assays revealed two specific bands made up by complexes of c-Fos/Fra, c-Jun, YY-1 (Yin and Yang 1) and possibly Oct-1. PMA treatment enhanced expression from the NAT1 promoter via the AP-1-binding site. Furthermore, in peripheral blood mononuclear cells, PMA increased endogenous NAT1 activity and induced mRNA expression from Promoter I, suggesting that it is functional in vivo.

Full Text

The Full Text of this article is available as a PDF (188.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blum M., Grant D. M., McBride W., Heim M., Meyer U. A. Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol. 1990 Apr;9(3):193–203. doi: 10.1089/dna.1990.9.193. [DOI] [PubMed] [Google Scholar]
  2. Bourke P. F., van Leeuwen B. H., Campbell H. D., Young I. G. Localization of the inducible enhancer in the mouse interleukin-5 gene that is responsive to T-cell receptor stimulation. Blood. 1995 Apr 15;85(8):2069–2077. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Butcher N. J., Boukouvala S., Sim E., Minchin R. F. Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J. 2002;2(1):30–42. doi: 10.1038/sj.tpj.6500053. [DOI] [PubMed] [Google Scholar]
  5. Butcher N. J., Ilett K. F., Minchin R. F. Functional polymorphism of the human arylamine N-acetyltransferase type 1 gene caused by C190T and G560A mutations. Pharmacogenetics. 1998 Feb;8(1):67–72. doi: 10.1097/00008571-199802000-00009. [DOI] [PubMed] [Google Scholar]
  6. Butcher N. J., Ilett K. F., Minchin R. F. Substrate-dependent regulation of human arylamine N-acetyltransferase-1 in cultured cells. Mol Pharmacol. 2000 Mar;57(3):468–473. doi: 10.1124/mol.57.3.468. [DOI] [PubMed] [Google Scholar]
  7. Estrada-Rodgers L., Levy G. N., Weber W. W. Characterization of a hormone response element in the mouse N-acetyltransferase 2 (Nat2*) promoter. Gene Expr. 1998;7(1):13–24. [PMC free article] [PubMed] [Google Scholar]
  8. Grant D. M., Blum M., Demierre A., Meyer U. A. Nucleotide sequence of an intronless gene for a human arylamine N-acetyltransferase related to polymorphic drug acetylation. Nucleic Acids Res. 1989 May 25;17(10):3978–3978. doi: 10.1093/nar/17.10.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hein D. W., Doll M. A., Fretland A. J., Leff M. A., Webb S. J., Xiao G. H., Devanaboyina U. S., Nangju N. A., Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev. 2000 Jan;9(1):29–42. [PubMed] [Google Scholar]
  10. Herzig T. C., Jobe S. M., Aoki H., Molkentin J. D., Cowley A. W., Jr, Izumo S., Markham B. E. Angiotensin II type1a receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7543–7548. doi: 10.1073/pnas.94.14.7543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hickman D., Risch A., Buckle V., Spurr N. K., Jeremiah S. J., McCarthy A., Sim E. Chromosomal localization of human genes for arylamine N-acetyltransferase. Biochem J. 1994 Feb 1;297(Pt 3):441–445. doi: 10.1042/bj2970441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hughes N. C., Janezic S. A., McQueen K. L., Jewett M. A., Castranio T., Bell D. A., Grant D. M. Identification and characterization of variant alleles of human acetyltransferase NAT1 with defective function using p-aminosalicylate as an in-vivo and in-vitro probe. Pharmacogenetics. 1998 Feb;8(1):55–66. doi: 10.1097/00008571-199802000-00008. [DOI] [PubMed] [Google Scholar]
  13. Javahery R., Khachi A., Lo K., Zenzie-Gregory B., Smale S. T. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol. 1994 Jan;14(1):116–127. doi: 10.1128/mcb.14.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaushansky K., O'Rork C., Shoemaker S. G., McCarty J. The regulation of GM-CSF is dependent on a complex interplay of multiple nuclear proteins. Mol Immunol. 1996 Mar-Apr;33(4-5):461–470. doi: 10.1016/0161-5890(95)00156-5. [DOI] [PubMed] [Google Scholar]
  15. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  16. Lin H. J., Probst-Hensch N. M., Hughes N. C., Sakamoto G. T., Louie A. D., Kau I. H., Lin B. K., Lee D. B., Lin J., Frankl H. D. Variants of N-acetyltransferase NAT1 and a case-control study of colorectal adenomas. Pharmacogenetics. 1998 Jun;8(3):269–281. doi: 10.1097/00008571-199806000-00009. [DOI] [PubMed] [Google Scholar]
  17. Lopez-Bayghen E., Vega A., Cadena A., Granados S. E., Jave L. F., Gariglio P., Alvarez-Salas L. M. Transcriptional analysis of the 5'-noncoding region of the human involucrin gene. J Biol Chem. 1996 Jan 5;271(1):512–520. doi: 10.1074/jbc.271.1.512. [DOI] [PubMed] [Google Scholar]
  18. Miller C. P., Lin J. C., Habener J. F. Transcription of the rat glucagon gene by the cyclic AMP response element-binding protein CREB is modulated by adjacent CREB-associated proteins. Mol Cell Biol. 1993 Nov;13(11):7080–7090. doi: 10.1128/mcb.13.11.7080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Minchin R. F. Acetylation of p-aminobenzoylglutamate, a folic acid catabolite, by recombinant human arylamine N-acetyltransferase and U937 cells. Biochem J. 1995 Apr 1;307(Pt 1):1–3. doi: 10.1042/bj3070001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mitchell Kent R., Warshawsky David. Xenobiotic inducible regions of the human arylamine N-acetyltransferase 1 and 2 genes. Toxicol Lett. 2003 Mar 20;139(1):11–23. doi: 10.1016/s0378-4274(02)00437-x. [DOI] [PubMed] [Google Scholar]
  21. Naora H., van Leeuwen B. H., Bourke P. F., Young I. G. Functional role and signal-induced modulation of proteins recognizing the conserved TCATTT-containing promoter elements in the murine IL-5 and GM-CSF genes in T lymphocytes. J Immunol. 1994 Oct 15;153(8):3466–3475. [PubMed] [Google Scholar]
  22. Nimer S. D., Zhang W., Kwan K., Whang Y., Zhang J., Wang Y. Adjacent, cooperative elements form a strong, constitutive enhancer in the human granulocyte-macrophage colony-stimulating factor gene. Blood. 1996 May 1;87(9):3694–3703. [PubMed] [Google Scholar]
  23. Nimer S., Fraser J., Richards J., Lynch M., Gasson J. The repeated sequence CATT(A/T) is required for granulocyte-macrophage colony-stimulating factor promoter activity. Mol Cell Biol. 1990 Nov;10(11):6084–6088. doi: 10.1128/mcb.10.11.6084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Connor M. J., Tan S. H., Tan C. H., Bernard H. U. YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity. J Virol. 1996 Oct;70(10):6529–6539. doi: 10.1128/jvi.70.10.6529-6539.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ohsako S., Deguchi T. Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N-acetyltransferases from human liver. J Biol Chem. 1990 Mar 15;265(8):4630–4634. [PubMed] [Google Scholar]
  26. Perrotti D., Bellón T., Trotta R., Martinez R., Calabretta B. A cell proliferation-dependent multiprotein complex NC-3A positively regulates the CD34 promoter via a TCATTT-containing element. Blood. 1996 Nov 1;88(9):3336–3348. [PubMed] [Google Scholar]
  27. Salton S. R., Fischberg D. J., Dong K. W. Structure of the gene encoding VGF, a nervous system-specific mRNA that is rapidly and selectively induced by nerve growth factor in PC12 cells. Mol Cell Biol. 1991 May;11(5):2335–2349. doi: 10.1128/mcb.11.5.2335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sim E., Payton M., Noble M., Minchin R. An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes. Hum Mol Genet. 2000 Oct;9(16):2435–2441. doi: 10.1093/hmg/9.16.2435. [DOI] [PubMed] [Google Scholar]
  29. Sinclair J. C., Sandy J., Delgoda R., Sim E., Noble M. E. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol. 2000 Jul;7(7):560–564. doi: 10.1038/76783. [DOI] [PubMed] [Google Scholar]
  30. Vatsis K. P., Weber W. W., Bell D. A., Dupret J. M., Evans D. A., Grant D. M., Hein D. W., Lin H. J., Meyer U. A., Relling M. V. Nomenclature for N-acetyltransferases. Pharmacogenetics. 1995 Feb;5(1):1–17. doi: 10.1097/00008571-199502000-00001. [DOI] [PubMed] [Google Scholar]
  31. Ward A., Summers M. J., Sim E. Purification of recombinant human N-acetyltransferase type 1 (NAT1) expressed in E. coli and characterization of its potential role in folate metabolism. Biochem Pharmacol. 1995 Jun 16;49(12):1759–1767. doi: 10.1016/0006-2952(95)00087-g. [DOI] [PubMed] [Google Scholar]
  32. Windmill K. F., Gaedigk A., Hall P. M., Samaratunga H., Grant D. M., McManus M. E. Localization of N-acetyltransferases NAT1 and NAT2 in human tissues. Toxicol Sci. 2000 Mar;54(1):19–29. doi: 10.1093/toxsci/54.1.19. [DOI] [PubMed] [Google Scholar]
  33. Ye J., Young H. A., Ortaldo J. R., Ghosh P. Identification of a DNA binding site for the nuclear factor YY1 in the human GM-CSF core promoter. Nucleic Acids Res. 1994 Dec 25;22(25):5672–5678. doi: 10.1093/nar/22.25.5672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ye J., Zhang X., Dong Z. Characterization of the human granulocyte-macrophage colony-stimulating factor gene promoter: an AP1 complex and an Sp1-related complex transactivate the promoter activity that is suppressed by a YY1 complex. Mol Cell Biol. 1996 Jan;16(1):157–167. doi: 10.1128/mcb.16.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES