Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 1;376(Pt 2):517–524. doi: 10.1042/BJ20030747

Transcriptional regulation of methionine synthase by homocysteine and choline in Aspergillus nidulans.

Magdalena M Kacprzak 1, Irmina Lewandowska 1, Rowena G Matthews 1, Andrzej Paszewski 1
PMCID: PMC1223784  PMID: 12954077

Abstract

Roles played by homocysteine and choline in the regulation of MS (methionine synthase) have been examined in fungi. The Aspergillus nidulans metH gene encoding MS was cloned and characterized. Its transcription was not regulated by methionine, but was enhanced by homocysteine and repressed by choline and betaine. MS activity levels were regulated in a similar way. The repression by betaine was due to its metabolic conversion to choline, which was found to be very efficient in A. nidulans. Betaine and choline supplementation stimulated growth of leaky metH mutants apparently by decreasing the demand for methyl groups and thus saving methionine and S -adenosylmethionine. We have also found that homocysteine stimulates transcription of MS-encoding genes in Saccharomyces cerevisiae and Schizosaccharomyces pombe.

Full Text

The Full Text of this article is available as a PDF (222.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brody H., Griffith J., Cuticchia A. J., Arnold J., Timberlake W. E. Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids Res. 1991 Jun 11;19(11):3105–3109. doi: 10.1093/nar/19.11.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burt E. T., O'Connor C., Larsen B. Isolation and identification of a 92-kDa stress induced protein from Candida albicans. Mycopathologia. 1999;147(1):13–20. doi: 10.1023/a:1007036518330. [DOI] [PubMed] [Google Scholar]
  3. Burton E. G., Metzenberg R. L. Regulation of methionine biosythesis in Neurospora crassa. Arch Biochem Biophys. 1975 May;168(1):219–229. doi: 10.1016/0003-9861(75)90244-1. [DOI] [PubMed] [Google Scholar]
  4. Cai X. Y., Redfield B., Maxon M., Weissbach H., Brot N. The effect of homocysteine on MetR regulation of metE, metR and metH expression in vitro. Biochem Biophys Res Commun. 1989 Aug 30;163(1):79–83. doi: 10.1016/0006-291x(89)92101-3. [DOI] [PubMed] [Google Scholar]
  5. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  6. Csaikl U., Csaikl F. Molecular cloning and characterization of the MET6 gene of Saccharomyces cerevisiae. Gene. 1986;46(2-3):207–214. doi: 10.1016/0378-1119(86)90405-1. [DOI] [PubMed] [Google Scholar]
  7. Drummond J. T., Jarrett J., González J. C., Huang S., Matthews R. G. Characterization of nonradioactive assays for cobalamin-dependent and cobalamin-independent methionine synthase enzymes. Anal Biochem. 1995 Jul 1;228(2):323–329. doi: 10.1006/abio.1995.1358. [DOI] [PubMed] [Google Scholar]
  8. Eckermann C., Eichel J., Schröder J. Plant methionine synthase: new insights into properties and expression. Biol Chem. 2000 Aug;381(8):695–703. doi: 10.1515/BC.2000.090. [DOI] [PubMed] [Google Scholar]
  9. Eichel J., González J. C., Hotze M., Matthews R. G., Schröder J. Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus roseus). Molecular characterization, regulation, heterologous expression, and enzyme properties. Eur J Biochem. 1995 Jun 15;230(3):1053–1058. doi: 10.1111/j.1432-1033.1995.tb20655.x. [DOI] [PubMed] [Google Scholar]
  10. Engler-Blum G., Meier M., Frank J., Müller G. A. Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem. 1993 May 1;210(2):235–244. doi: 10.1006/abio.1993.1189. [DOI] [PubMed] [Google Scholar]
  11. Gajewski W., Litwińska J. Methionine loci and their suppressors in Aspergillus nidulans. Mol Gen Genet. 1968;102(3):210–220. doi: 10.1007/BF00385976. [DOI] [PubMed] [Google Scholar]
  12. Godon C., Lagniel G., Lee J., Buhler J. M., Kieffer S., Perrot M., Boucherie H., Toledano M. B., Labarre J. The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem. 1998 Aug 28;273(35):22480–22489. doi: 10.1074/jbc.273.35.22480. [DOI] [PubMed] [Google Scholar]
  13. González J. C., Banerjee R. V., Huang S., Sumner J. S., Matthews R. G. Comparison of cobalamin-independent and cobalamin-dependent methionine synthases from Escherichia coli: two solutions to the same chemical problem. Biochemistry. 1992 Jul 7;31(26):6045–6056. doi: 10.1021/bi00141a013. [DOI] [PubMed] [Google Scholar]
  14. Incharoensakdi A., Waditee R. Degradation of glycinebetaine by betaine-homocysteine methyltransferase in Aphanothece halophytica: effect of salt downshock and starvation. Curr Microbiol. 2000 Oct;41(4):227–231. doi: 10.1007/s002840010125. [DOI] [PubMed] [Google Scholar]
  15. Jakubowski H. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae. EMBO J. 1991 Mar;10(3):593–598. doi: 10.1002/j.1460-2075.1991.tb07986.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J. 1999 Dec;13(15):2277–2283. [PubMed] [Google Scholar]
  17. Jakubowski Hieronim. The determination of homocysteine-thiolactone in biological samples. Anal Biochem. 2002 Sep 1;308(1):112–119. doi: 10.1016/s0003-2697(02)00224-5. [DOI] [PubMed] [Google Scholar]
  18. Kurvari V., Qian F., Snell W. J. Increased transcript levels of a methionine synthase during adhesion-induced activation of Chlamydomonas reinhardtii gametes. Plant Mol Biol. 1995 Dec;29(6):1235–1252. doi: 10.1007/BF00020465. [DOI] [PubMed] [Google Scholar]
  19. Lewandowska I., Balińska M., Natorff R., Paszewski A. Regulation of folate-dependent enzyme levels in Aspergillus nidulans: studies with regulatory mutants. Biochim Biophys Acta. 1996 May 21;1290(1):89–94. doi: 10.1016/0304-4165(96)00004-9. [DOI] [PubMed] [Google Scholar]
  20. Mountain H. A., Byström A. S., Korch C. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae. Mol Microbiol. 1993 Jan;7(2):215–228. doi: 10.1111/j.1365-2958.1993.tb01113.x. [DOI] [PubMed] [Google Scholar]
  21. Mudd S. H., Datko A. H. Methionine methyl group metabolism in lemna. Plant Physiol. 1986 May;81(1):103–114. doi: 10.1104/pp.81.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Natorff R., Balińska M., Paszewski A. At least four regulatory genes control sulphur metabolite repression in Aspergillus nidulans. Mol Gen Genet. 1993 Apr;238(1-2):185–192. doi: 10.1007/BF00279546. [DOI] [PubMed] [Google Scholar]
  23. Natorff Renata, Sieńko Marzena, Brzywczy Jerzy, Paszewski Andrzej. The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes. Mol Microbiol. 2003 Aug;49(4):1081–1094. doi: 10.1046/j.1365-2958.2003.03617.x. [DOI] [PubMed] [Google Scholar]
  24. Norbeck J., Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J Biol Chem. 1997 Feb 28;272(9):5544–5554. doi: 10.1074/jbc.272.9.5544. [DOI] [PubMed] [Google Scholar]
  25. Park Y. I., Buszko M. L., Gander J. E. Glycine betaine: reserve form of choline in Penicillium fellutanum in low-sulfate medium. Appl Environ Microbiol. 1999 Mar;65(3):1340–1342. doi: 10.1128/aem.65.3.1340-1342.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paszewski A., Grabski J. Homolanthionine in fungi: accumulation in the methionine-requiring mutants of Aspergillus nidulans. Acta Biochim Pol. 1975;22(3):263–268. [PubMed] [Google Scholar]
  27. Pieniazek N. J., Kowalska I. M., Stepień P. P. Deficiency in methionine adenosyltransferase resulting in limited repressibility of methionine biosynthetic enzymes in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 22;126(4):367–374. doi: 10.1007/BF00269446. [DOI] [PubMed] [Google Scholar]
  28. Pieniazek N., Stepień P. P., Paszewski A. An Aspergillus nidulans mutant lacking cystathionine -synthase: identity of L-serine sulfhydrylase with cystathionine -synthase and its distinctness from O-acetyl-L-serine sulfhydrylase. Biochim Biophys Acta. 1973 Jan 24;297(1):37–47. doi: 10.1016/0304-4165(73)90047-0. [DOI] [PubMed] [Google Scholar]
  29. Saint-Girons I., Belfaiza J., Guillou Y., Perrin D., Guiso N., Bârzu O., Cohen G. N. Interactions of the Escherichia coli methionine repressor with the metF operator and with its corepressor, S-adenosylmethionine. J Biol Chem. 1986 Aug 15;261(23):10936–10940. [PubMed] [Google Scholar]
  30. Sieńko M., Topczewski J., Paszewski A. Structure and regulation of cysD, the homocysteine synthase gene of Aspergillus nidulans. Curr Genet. 1998 Feb;33(2):136–144. doi: 10.1007/s002940050319. [DOI] [PubMed] [Google Scholar]
  31. Skiba W. E., Taylor M. P., Wells M. S., Mangum J. H., Awad W. M., Jr Human hepatic methionine biosynthesis. Purification and characterization of betaine:homocysteine S-methyltransferase. J Biol Chem. 1982 Dec 25;257(24):14944–14948. [PubMed] [Google Scholar]
  32. Smith L. T., Pocard J. A., Bernard T., Le Rudulier D. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol. 1988 Jul;170(7):3142–3149. doi: 10.1128/jb.170.7.3142-3149.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sunden S. L., Renduchintala M. S., Park E. I., Miklasz S. D., Garrow T. A. Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys. 1997 Sep 1;345(1):171–174. doi: 10.1006/abbi.1997.0246. [DOI] [PubMed] [Google Scholar]
  34. Thomas D., Jacquemin I., Surdin-Kerjan Y. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Apr;12(4):1719–1727. doi: 10.1128/mcb.12.4.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Waring R. B., May G. S., Morris N. R. Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene. 1989 Jun 30;79(1):119–130. doi: 10.1016/0378-1119(89)90097-8. [DOI] [PubMed] [Google Scholar]
  36. Zeh Michaela, Leggewie Georg, Hoefgen Rainer, Hesse Holger. Cloning and characterization of a cDNA encoding a cobalamin-independent methionine synthase from potato (Solanum tuberosum L.). Plant Mol Biol. 2002 Feb 1;48(3):255–265. doi: 10.1023/a:1013333303554. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES