Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 1;376(Pt 2):433–440. doi: 10.1042/BJ20030413

Structural and biochemical characterization of a new type of lectin isolated from carp eggs.

Monica Galliano 1, Lorenzo Minchiotti 1, Monica Campagnoli 1, Alberto Sala 1, Livia Visai 1, Angela Amoresano 1, Piero Pucci 1, Annarita Casbarra 1, Marco Cauci 1, Massimiliano Perduca 1, Hugo L Monaco 1
PMCID: PMC1223786  PMID: 12956625

Abstract

A previously unidentified glycoprotein present in the eggs of the carp ( Cyprinus carpio ) was isolated and structurally characterized. The protein binds to a Sepharose 4B matrix and can be eluted with 0.4 M N -acetylglucosamine. The protein has an apparent molecular mass of 26686.3 Da. On the basis of gel-filtration chromatography, the protein appears to be present in solution as a monomer. The sequence of its 238 amino acids, the position of its four disulphide bridges and the composition of its single N-linked carbohydrate chain were determined. The lectin shows a very low agglutinating activity for human A-type erythrocytes and interacts with both Gram-positive and -negative bacteria. These latter interactions are inhibited by N -acetylglucosamine. A database search shows that its amino acid sequence is similar to that of the members of an invertebrate lectin family that includes tachylectin-1. Tachylectin-1 is present in the amoebocytes of the horseshoe crab, Tachypleus tridentatus, and plays a role in the innate defence system of this species. Homologous genes are also present in other fish, having 85% identity with a gene expressed in the oocytes of the crucian carp ( Carassius auratus gibelio ) and 78% identity with a gene in the cDNA library of the zebrafish ( Danio rerio ).

Full Text

The Full Text of this article is available as a PDF (189.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen S. C., Yen C. H., Yeh M. S., Huang C. J., Liu T. Y. Biochemical properties and cDNa cloning of two new lectins from the plasma of Tachypleus tridentatus: Tachypleus plasma lectin 1 and 2+. J Biol Chem. 2000 Dec 22;276(13):9631–9639. doi: 10.1074/jbc.M008414200. [DOI] [PubMed] [Google Scholar]
  2. Chiou S. T., Chen Y. W., Chen S. C., Chao C. F., Liu T. Y. Isolation and characterization of proteins that bind to galactose, lipopolysaccharide of Escherichia coli, and protein A of Staphylococcus aureus from the hemolymph of Tachypleus tridentatus. J Biol Chem. 2000 Jan 21;275(3):1630–1634. doi: 10.1074/jbc.275.3.1630. [DOI] [PubMed] [Google Scholar]
  3. Dodd R. B., Drickamer K. Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology. 2001 May;11(5):71R–79R. doi: 10.1093/glycob/11.5.71r. [DOI] [PubMed] [Google Scholar]
  4. Ellis A. E. Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol. 2001 Oct-Dec;25(8-9):827–839. doi: 10.1016/s0145-305x(01)00038-6. [DOI] [PubMed] [Google Scholar]
  5. Fülöp V., Jones D. T. Beta propellers: structural rigidity and functional diversity. Curr Opin Struct Biol. 1999 Dec;9(6):715–721. doi: 10.1016/s0959-440x(99)00035-4. [DOI] [PubMed] [Google Scholar]
  6. Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313–1318. doi: 10.1126/science.284.5418.1313. [DOI] [PubMed] [Google Scholar]
  7. Hosono M., Ishikawa K., Mineki R., Murayama K., Numata C., Ogawa Y., Takayanagi Y., Nitta K. Tandem repeat structure of rhamnose-binding lectin from catfish (Silurus asotus) eggs. Biochim Biophys Acta. 1999 Nov 16;1472(3):668–675. doi: 10.1016/s0304-4165(99)00185-3. [DOI] [PubMed] [Google Scholar]
  8. Huh C. G., Aldrich J., Mottahedeh J., Kwon H., Johnson C., Marsh R. Cloning and characterization of Physarum polycephalum tectonins. Homologues of Limulus lectin L-6. J Biol Chem. 1998 Mar 13;273(11):6565–6574. doi: 10.1074/jbc.273.11.6565. [DOI] [PubMed] [Google Scholar]
  9. Iwanaga S., Kawabata S., Muta T. New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem. 1998 Jan;123(1):1–15. doi: 10.1093/oxfordjournals.jbchem.a021894. [DOI] [PubMed] [Google Scholar]
  10. Iwanaga Sadaaki. The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol. 2002 Feb;14(1):87–95. doi: 10.1016/s0952-7915(01)00302-8. [DOI] [PubMed] [Google Scholar]
  11. Jones S. R. The occurrence and mechanisms of innate immunity against parasites in fish. Dev Comp Immunol. 2001 Oct-Dec;25(8-9):841–852. doi: 10.1016/s0145-305x(01)00039-8. [DOI] [PubMed] [Google Scholar]
  12. Kawabata S., Iwanaga S. Role of lectins in the innate immunity of horseshoe crab. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):391–400. doi: 10.1016/s0145-305x(99)00019-1. [DOI] [PubMed] [Google Scholar]
  13. Kubo T., Kawasaki K., Natori S. Transient appearance and localization of a 26-kDa lectin, a novel member of the Periplaneta lectin family, in regenerating cockroach leg. Dev Biol. 1993 Apr;156(2):381–390. doi: 10.1006/dbio.1993.1085. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lis Halina, Sharon Nathan. Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. Chem Rev. 1998 Apr 2;98(2):637–674. doi: 10.1021/cr940413g. [DOI] [PubMed] [Google Scholar]
  16. Magor B. G., Magor K. E. Evolution of effectors and receptors of innate immunity. Dev Comp Immunol. 2001 Oct-Dec;25(8-9):651–682. doi: 10.1016/s0145-305x(01)00029-5. [DOI] [PubMed] [Google Scholar]
  17. Nagai T., Kawabata S., Shishikura F., Sugita H. Purification, characterization, and amino acid sequence of an embryonic lectin in perivitelline fluid of the horseshoe crab. J Biol Chem. 1999 Dec 31;274(53):37673–37678. doi: 10.1074/jbc.274.53.37673. [DOI] [PubMed] [Google Scholar]
  18. Rudd P. M., Elliott T., Cresswell P., Wilson I. A., Dwek R. A. Glycosylation and the immune system. Science. 2001 Mar 23;291(5512):2370–2376. doi: 10.1126/science.291.5512.2370. [DOI] [PubMed] [Google Scholar]
  19. Sacchettini J. C., Baum L. G., Brewer C. F. Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry. 2001 Mar 13;40(10):3009–3015. doi: 10.1021/bi002544j. [DOI] [PubMed] [Google Scholar]
  20. Saito T., Hatada M., Iwanaga S., Kawabata S. A newly identified horseshoe crab lectin with binding specificity to O-antigen of bacterial lipopolysaccharides. J Biol Chem. 1997 Dec 5;272(49):30703–30708. doi: 10.1074/jbc.272.49.30703. [DOI] [PubMed] [Google Scholar]
  21. Saito T., Kawabata S., Hirata M., Iwanaga S. A novel type of limulus lectin-L6. Purification, primary structure, and antibacterial activity. J Biol Chem. 1995 Jun 16;270(24):14493–14499. doi: 10.1074/jbc.270.24.14493. [DOI] [PubMed] [Google Scholar]
  22. Tateno H., Saneyoshi A., Ogawa T., Muramoto K., Kamiya H., Saneyoshi M. Isolation and characterization of rhamnose-binding lectins from eggs of steelhead trout (Oncorhynchus mykiss) homologous to low density lipoprotein receptor superfamily. J Biol Chem. 1998 Jul 24;273(30):19190–19197. doi: 10.1074/jbc.273.30.19190. [DOI] [PubMed] [Google Scholar]
  23. Xie J., Wen J. J., Chen B., Gui J. F. Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps. Gene. 2001 Jun 13;271(1):109–116. doi: 10.1016/s0378-1119(01)00491-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES