Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 1;376(Pt 2):339–350. doi: 10.1042/BJ20030673

Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function.

Albert S B Edge 1
PMCID: PMC1223790  PMID: 12974674

Abstract

The alteration of proteins by post-translational modifications, including phosphorylation, sulphation, processing by proteolysis, lipid attachment and glycosylation, gives rise to a broad range of molecules that can have an identical underlying protein core. An understanding of glycosylation of proteins is important in clarifying the nature of the numerous variants observed and in determining the biological roles of these modifications. Deglycosylation with TFMS (trifluoromethanesulphonic acid) [Edge, Faltynek, Hof, Reichert, and Weber, (1981) Anal. Biochem. 118, 131-137] has been used extensively to remove carbohydrate from glycoproteins, while leaving the protein backbone intact. Glycosylated proteins from animals, plants, fungi and bacteria have been deglycosylated with TFMS, and the most extensively studied types of carbohydrate chains in mammals, the N-linked, O-linked and glycosaminoglycan chains, are all removed by this procedure. The method is based on the finding that linkages between sugars are sensitive to cleavage by TFMS, whereas the peptide bond is stable and is not broken, even with prolonged deglycosylation. The relative susceptibility of individual sugars in glycosidic linkage varies with the substituents at C-2 and the occurrence of amido and acetyl groups, but even the most stable sugars are removed under conditions that are sufficiently mild to prevent scission of peptide bonds. The post-translational modifications of proteins have been shown to be required for diverse biological functions, and selective procedures to remove these modifications play an important role in the elucidation of protein structure and function.

Full Text

The Full Text of this article is available as a PDF (231.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A. K., Bolwell G. P., Brown D. S., Sidebottom C., Slabas A. R. Potato lectin: a three-domain glycoprotein with novel hydroxyproline-containing sequences and sequence similarities to wheat-germ agglutinin. Int J Biochem Cell Biol. 1996 Nov;28(11):1285–1291. doi: 10.1016/s1357-2725(96)00043-x. [DOI] [PubMed] [Google Scholar]
  2. Altman E., Schäffer C., Brisson J. R., Messner P. Characterization of the glycan structure of a major glycopeptide from the surface layer glycoprotein of Clostridium thermosaccharolyticum E207-71. Eur J Biochem. 1995 Apr 1;229(1):308–315. doi: 10.1111/j.1432-1033.1995.tb20470.x. [DOI] [PubMed] [Google Scholar]
  3. Baeckström D., Hansson G. C., Nilsson O., Johansson C., Gendler S. J., Lindholm L. Purification and characterization of a membrane-bound and a secreted mucin-type glycoprotein carrying the carcinoma-associated sialyl-Lea epitope on distinct core proteins. J Biol Chem. 1991 Nov 15;266(32):21537–21547. [PubMed] [Google Scholar]
  4. Baeckström D., Nilsson O., Price M. R., Lindholm L., Hansson G. C. Discrimination of MUC1 mucins from other sialyl-Le(a)-carrying glycoproteins produced by colon carcinoma cells using a novel monoclonal antibody. Cancer Res. 1993 Feb 15;53(4):755–761. [PubMed] [Google Scholar]
  5. Batanero E., Villalba M., Rodríguez R. Glycosylation site of the major allergen from olive tree pollen. Allergenic implications of the carbohydrate moiety. Mol Immunol. 1994 Jan;31(1):31–37. doi: 10.1016/0161-5890(94)90135-x. [DOI] [PubMed] [Google Scholar]
  6. Bell S. L., Khatri I. A., Xu G., Forstner J. F. Evidence that a peptide corresponding to the rat Muc2 C-terminus undergoes disulphide-mediated dimerization. Eur J Biochem. 1998 Apr 1;253(1):123–131. doi: 10.1046/j.1432-1327.1998.2530123.x. [DOI] [PubMed] [Google Scholar]
  7. Bhatnagar P., Gupta S. K., Sehgal S. Immunogenicity of deglycosylated zona pellucida antigens and their inhibitory effects on fertility in rabbits. Int J Fertil. 1992 Jan-Feb;37(1):53–63. [PubMed] [Google Scholar]
  8. Bhattacharyya S. N., Enriquez J. I., Sr, Manna B. Deglycosylation of neutral and acidic human colonic mucin. Inflammation. 1990 Feb;14(1):93–107. doi: 10.1007/BF00914033. [DOI] [PubMed] [Google Scholar]
  9. Bhattacharyya S. N., Veit B. C., Manna B., Enriquez J. I., Walker M. P., Khorrami A. M., Kaufman B. Neutral and acidic human tracheobronchial mucin. Isolation and characterization of core protein. Inflammation. 1990 Aug;14(4):355–373. doi: 10.1007/BF00914088. [DOI] [PubMed] [Google Scholar]
  10. Bosch M., Knudsen J. S., Derksen J., Mariani C. Class III pistil-specific extensin-like proteins from tobacco have characteristics of arabinogalactan proteins. Plant Physiol. 2001 Apr;125(4):2180–2188. doi: 10.1104/pp.125.4.2180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bäcklund Johan, Carlsen Stefan, Höger Torsten, Holm Björn, Fugger Lars, Kihlberg Jan, Burkhardt Harald, Holmdahl Rikard. Predominant selection of T cells specific for the glycosylated collagen type II epitope (263-270) in humanized transgenic mice and in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2002 Jun 27;99(15):9960–9965. doi: 10.1073/pnas.132254199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Choudhury A., Moniaux N., Winpenny J. P., Hollingsworth M. A., Aubert J. P., Batra S. K. Human MUC4 mucin cDNA and its variants in pancreatic carcinoma. J Biochem. 2000 Aug;128(2):233–243. doi: 10.1093/oxfordjournals.jbchem.a022746. [DOI] [PubMed] [Google Scholar]
  13. Christian R., Schulz G., Schuster-Kolbe J., Allmaier G., Schmid E. R., Sleytr U. B., Messner P. Complete structure of the tyrosine-linked saccharide moiety from the surface layer glycoprotein of Clostridium thermohydrosulfuricum S102-70. J Bacteriol. 1993 Mar;175(5):1250–1256. doi: 10.1128/jb.175.5.1250-1256.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dabich D., Yurewicz E. C., Battel V. A. Deglycosylation with trifluoromethanesulfonic acid differentially affects inhibitor activities of turkey ovomucoid. Biochim Biophys Acta. 1993 Jun 24;1164(1):47–53. doi: 10.1016/0167-4838(93)90110-d. [DOI] [PubMed] [Google Scholar]
  15. Dalziel M., Whitehouse C., McFarlane I., Brockhausen I., Gschmeissner S., Schwientek T., Clausen H., Burchell J. M., Taylor-Papadimitriou J. The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J Biol Chem. 2000 Dec 15;276(14):11007–11015. doi: 10.1074/jbc.M006523200. [DOI] [PubMed] [Google Scholar]
  16. Deddish P. A., Skidgel R. A., Kriho V. B., Li X. Y., Becker R. P., Erdös E. G. Carboxypeptidase M in Madin-Darby canine kidney cells. Evidence that carboxypeptidase M has a phosphatidylinositol glycan anchor. J Biol Chem. 1990 Sep 5;265(25):15083–15089. [PubMed] [Google Scholar]
  17. Desai N. N., Allen A. K., Neuberger A. The properties of potato (Solanum tuberosum) lectin after deglycosylation by trifluoromethanesulphonic acid. Biochem J. 1983 Apr 1;211(1):273–276. doi: 10.1042/bj2110273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Desarnaud F., Marie J., Lombard C., Larguier R., Seyer R., Lorca T., Jard S., Bonnafous J. C. Deglycosylation and fragmentation of purified rat liver angiotensin II receptor: application to the mapping of hormone-binding domains. Biochem J. 1993 Jan 1;289(Pt 1):289–297. doi: 10.1042/bj2890289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dhiman N., Khuller G. K. Immunoprophylactic properties of 71-kDa cell wall-associated protein antigen of Mycobacterium tuberculosis H37Ra. Med Microbiol Immunol. 1997 Jun;186(1):45–51. doi: 10.1007/s004300050045. [DOI] [PubMed] [Google Scholar]
  20. Dhiman N., Verma I., Khuller G. K. Cellular immune responses to cell wall peptidoglycan associated protein antigens in tuberculosis patients and healthy subjects. Microbiol Immunol. 1997;41(6):495–502. doi: 10.1111/j.1348-0421.1997.tb01883.x. [DOI] [PubMed] [Google Scholar]
  21. Dissous C., Grzych J. M., Capron A. Schistosoma mansoni shares a protective oligosaccharide epitope with freshwater and marine snails. Nature. 1986 Oct 2;323(6087):443–445. doi: 10.1038/323443a0. [DOI] [PubMed] [Google Scholar]
  22. Dwek R. A., Edge C. J., Harvey D. J., Wormald M. R., Parekh R. B. Analysis of glycoprotein-associated oligosaccharides. Annu Rev Biochem. 1993;62:65–100. doi: 10.1146/annurev.bi.62.070193.000433. [DOI] [PubMed] [Google Scholar]
  23. Edge A. S., Faltynek C. R., Hof L., Reichert L. E., Jr, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem. 1981 Nov 15;118(1):131–137. doi: 10.1016/0003-2697(81)90168-8. [DOI] [PubMed] [Google Scholar]
  24. Edge A. S., Kahn C. R., Spiro R. G. Insulin receptor carbohydrate units contain poly-N-acetyllactosamine chains. Endocrinology. 1990 Oct;127(4):1887–1895. doi: 10.1210/endo-127-4-1887. [DOI] [PubMed] [Google Scholar]
  25. Edge A. S., Spiro R. G. Characterization of novel sequences containing 3-O-sulfated glucosamine in glomerular basement membrane heparan sulfate and localization of sulfated disaccharides to a peripheral domain. J Biol Chem. 1990 Sep 15;265(26):15874–15881. [PubMed] [Google Scholar]
  26. Edge A. S., Spiro R. G. Selective deglycosylation of the heparan sulfate proteoglycan of bovine glomerular basement membrane and identification of the core protein. J Biol Chem. 1987 May 15;262(14):6893–6898. [PubMed] [Google Scholar]
  27. Engelmann S., Schwartz-Albiez R. Differential release of proteoglycans during human B lymphocyte maturation. Carbohydr Res. 1997 Jul 11;302(1-2):85–95. doi: 10.1016/s0008-6215(97)00115-8. [DOI] [PubMed] [Google Scholar]
  28. Enghild J. J., Thøgersen I. B., Pizzo S. V., Salvesen G. Analysis of inter-alpha-trypsin inhibitor and a novel trypsin inhibitor, pre-alpha-trypsin inhibitor, from human plasma. Polypeptide chain stoichiometry and assembly by glycan. J Biol Chem. 1989 Sep 25;264(27):15975–15981. [PubMed] [Google Scholar]
  29. Fischer D. C., Kolbe-Busch S., Stöcker G., Hoffmann A., Haubeck H. D. Development of enzyme immunoassays specific for keratan sulphate- and core-protein-epitopes of the large aggregating proteoglycan from human articular cartilage. Eur J Clin Chem Clin Biochem. 1994 Apr;32(4):285–291. doi: 10.1515/cclm.1994.32.4.285. [DOI] [PubMed] [Google Scholar]
  30. Florman H. M., Wassarman P. M. O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity. Cell. 1985 May;41(1):313–324. doi: 10.1016/0092-8674(85)90084-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Funderburgh J. L., Conrad G. W. Isoforms of corneal keratan sulfate proteoglycan. J Biol Chem. 1990 May 15;265(14):8297–8303. [PubMed] [Google Scholar]
  32. Garcia-Casado G., Sanchez-Monge R., Chrispeels M. J., Armentia A., Salcedo G., Gomez L. Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology. 1996 Jun;6(4):471–477. doi: 10.1093/glycob/6.4.471. [DOI] [PubMed] [Google Scholar]
  33. Gauer S., Schulze-Lohoff E., Schleicher E., Sterzel R. B. Glomerular basement membrane-derived perlecan inhibits mesangial cell adhesion to fibronectin. Eur J Cell Biol. 1996 Jul;70(3):233–242. [PubMed] [Google Scholar]
  34. Gerken T. A., Gupta R., Jentoft N. A novel approach for chemically deglycosylating O-linked glycoproteins. The deglycosylation of submaxillary and respiratory mucins. Biochemistry. 1992 Jan 28;31(3):639–648. doi: 10.1021/bi00118a002. [DOI] [PubMed] [Google Scholar]
  35. Gerken T. A., Owens C. L., Pasumarthy M. Determination of the site-specific O-glycosylation pattern of the porcine submaxillary mucin tandem repeat glycopeptide. Model proposed for the polypeptide:galnac transferase peptide binding site. J Biol Chem. 1997 Apr 11;272(15):9709–9719. doi: 10.1074/jbc.272.15.9709. [DOI] [PubMed] [Google Scholar]
  36. Goodacre J. A., Middleton S., Lynn S., Ross D. A., Pearson J. Human cartilage aggrecan CS1 region contains cryptic T-cell recognition sites. Immunology. 1993 Apr;78(4):586–591. [PMC free article] [PubMed] [Google Scholar]
  37. Goodstone N. J., Doran M. C., Hobbs R. N., Butler R. C., Dixey J. J., Ashton B. A. Cellular immunity to cartilage aggrecan core protein in patients with rheumatoid arthritis and non-arthritic controls. Ann Rheum Dis. 1996 Jan;55(1):40–46. doi: 10.1136/ard.55.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Gowda D. C., Petrella E. C., Raj T. T., Bredehorst R., Vogel C. W. Immunoreactivity and function of oligosaccharides in cobra venom factor. J Immunol. 1994 Mar 15;152(6):2977–2986. [PubMed] [Google Scholar]
  39. Groffen A. J., Ruegg M. A., Dijkman H., van de Velden T. J., Buskens C. A., van den Born J., Assmann K. J., Monnens L. A., Veerkamp J. H., van den Heuvel L. P. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J Histochem Cytochem. 1998 Jan;46(1):19–27. doi: 10.1177/002215549804600104. [DOI] [PubMed] [Google Scholar]
  40. Gu J. X., Matsuda T., Nakamura R., Ishiguro H., Ohkubo I., Sasaki M., Takahashi N. Chemical deglycosylation of hen ovomucoid: protective effect of carbohydrate moiety on tryptic hydrolysis and heat denaturation. J Biochem. 1989 Jul;106(1):66–70. doi: 10.1093/oxfordjournals.jbchem.a122821. [DOI] [PubMed] [Google Scholar]
  41. Guerassimov A., Zhang Y., Banerjee S., Cartman A., Leroux J. Y., Rosenberg L. C., Esdaile J., Fitzcharles M. A., Poole A. R. Cellular immunity to the G1 domain of cartilage proteoglycan aggrecan is enhanced in patients with rheumatoid arthritis but only after removal of keratan sulfate. Arthritis Rheum. 1998 Jun;41(6):1019–1025. doi: 10.1002/1529-0131(199806)41:6<1019::AID-ART8>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  42. Hagen S. G., Michael A. F., Butkowski R. J. Immunochemical and biochemical evidence for distinct basement membrane heparan sulfate proteoglycans. J Biol Chem. 1993 Apr 5;268(10):7261–7269. [PubMed] [Google Scholar]
  43. Haltiwanger Robert S. Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol. 2002 Oct;12(5):593–598. doi: 10.1016/s0959-440x(02)00371-8. [DOI] [PubMed] [Google Scholar]
  44. Hanisch F. G., Uhlenbruck G., Peter-Katalinic J., Egge H., Dabrowski J., Dabrowski U. Structures of neutral O-linked polylactosaminoglycans on human skim milk mucins. A novel type of linearly extended poly-N-acetyllactosamine backbones with Gal beta(1-4)GlcNAc beta(1-6) repeating units. J Biol Chem. 1989 Jan 15;264(2):872–883. [PubMed] [Google Scholar]
  45. Haraguchi T., Fisher S., Olofsson S., Endo T., Groth D., Tarentino A., Borchelt D. R., Teplow D., Hood L., Burlingame A. Asparagine-linked glycosylation of the scrapie and cellular prion proteins. Arch Biochem Biophys. 1989 Oct;274(1):1–13. doi: 10.1016/0003-9861(89)90409-8. [DOI] [PubMed] [Google Scholar]
  46. Harrison R. A. Human C1 inhibitor: improved isolation and preliminary structural characterization. Biochemistry. 1983 Oct 11;22(21):5001–5007. doi: 10.1021/bi00290a019. [DOI] [PubMed] [Google Scholar]
  47. Hascall V. C., Calabro A., Midura R. J., Yanagishita M. Isolation and characterization of proteoglycans. Methods Enzymol. 1994;230:390–417. doi: 10.1016/0076-6879(94)30026-7. [DOI] [PubMed] [Google Scholar]
  48. Hedrick J. L., Wardrip N. J. On the macromolecular composition of the zona pellucida from porcine oocytes. Dev Biol. 1987 Jun;121(2):478–488. doi: 10.1016/0012-1606(87)90184-9. [DOI] [PubMed] [Google Scholar]
  49. Hefta S. A., Paxton R. J., Shively J. E. Sequence and glycosylation site identity of two distinct glycoforms of nonspecific cross-reacting antigen as demonstrated by sequence analysis and fast atom bombardment mass spectrometry. J Biol Chem. 1990 May 25;265(15):8618–8626. [PubMed] [Google Scholar]
  50. Henderson C. J., Hulme M. J., Aitken R. J. Analysis of the biological properties of antibodies raised against intact and deglycosylated porcine zonae pellucidae. Gamete Res. 1987 Apr;16(4):323–341. doi: 10.1002/mrd.1120160407. [DOI] [PubMed] [Google Scholar]
  51. Herzberg V. L., Grigorescu F., Edge A. S., Spiro R. G., Kahn C. R. Characterization of insulin receptor carbohydrate by comparison of chemical and enzymatic deglycosylation. Biochem Biophys Res Commun. 1985 Jun 28;129(3):789–796. doi: 10.1016/0006-291x(85)91961-8. [DOI] [PubMed] [Google Scholar]
  52. Hirschfield G. R., McNeil M., Brennan P. J. Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis. J Bacteriol. 1990 Feb;172(2):1005–1013. doi: 10.1128/jb.172.2.1005-1013.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hollingsworth M. A., Strawhecker J. M., Caffrey T. C., Mack D. R. Expression of MUC1, MUC2, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumor cell lines. Int J Cancer. 1994 Apr 15;57(2):198–203. doi: 10.1002/ijc.2910570212. [DOI] [PubMed] [Google Scholar]
  54. Horan Hand P., Simpson J. F., Kuroki M., Parker R., Schlom J. Reactivities of an anti-CEA peptide monoclonal antibody. Int J Biol Markers. 1992 Jan-Mar;7(1):1–15. doi: 10.1177/172460089200700101. [DOI] [PubMed] [Google Scholar]
  55. Hortsch M., Goodman C. S. Drosophila fasciclin I, a neural cell adhesion molecule, has a phosphatidylinositol lipid membrane anchor that is developmentally regulated. J Biol Chem. 1990 Sep 5;265(25):15104–15109. [PubMed] [Google Scholar]
  56. Horvath E., Edwards A. M., Bell J. C., Braun P. E. Chemical deglycosylation on a micro-scale of membrane glycoproteins with retention of phosphoryl-protein linkages. J Neurosci Res. 1989 Nov;24(3):398–401. doi: 10.1002/jnr.490240309. [DOI] [PubMed] [Google Scholar]
  57. Hunt D. C., Chrispeels M. J. The signal Peptide of a vacuolar protein is necessary and sufficient for the efficient secretion of a cytosolic protein. Plant Physiol. 1991 May;96(1):18–25. doi: 10.1104/pp.96.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Itano N., Oguri K., Nakanishi H., Okayama M. Membrane-intercalated proteoglycan of a stroma-inducing clone from Lewis lung carcinoma binds to fibronectin via its heparan sulfate chains. J Biochem. 1993 Dec;114(6):862–873. doi: 10.1093/oxfordjournals.jbchem.a124269. [DOI] [PubMed] [Google Scholar]
  59. Jarchow J., Fritz J., Anselmetti D., Calabro A., Hascall V. C., Gerosa D., Burger M. M., Fernàndez-Busquets X. Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges. J Struct Biol. 2000 Nov;132(2):95–105. doi: 10.1006/jsbi.2000.4309. [DOI] [PubMed] [Google Scholar]
  60. Jost C. J., Funderburgh J. L., Mann M., Hassell J. R., Conrad G. W. Cell-free translation and characterization of corneal keratan sulfate proteoglycan core proteins. J Biol Chem. 1991 Jul 15;266(20):13336–13341. [PubMed] [Google Scholar]
  61. Jubilut G. N., Cilli E. M., Tominaga M., Miranda A., Okada Y., Nakaie C. R. Evaluation of the trifluoromethanosulfonic acid/trifluoroacetic acid/thioanisole cleavage procedure for application in solid-phase peptide synthesis. Chem Pharm Bull (Tokyo) 2001 Sep;49(9):1089–1092. doi: 10.1248/cpb.49.1089. [DOI] [PubMed] [Google Scholar]
  62. Karp D. R., Parker K. L., Shreffler D. C., Slaughter C., Capra J. D. Amino acid sequence homologies and glycosylation differences between the fourth component of murine complement and sex-limited protein. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6347–6349. doi: 10.1073/pnas.79.20.6347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Khorrami Ali M., Choudhury Amit, Andrianifahanana Mahefatiana, Varshney Grish C., Bhattacharyya Sambhu N., Hollingsworth Michael A., Kaufman Bernard, Batra Surinder K. Purification and characterization of a human pancreatic adenocarcinoma mucin. J Biochem. 2002 Jan;131(1):21–29. doi: 10.1093/oxfordjournals.jbchem.a003073. [DOI] [PubMed] [Google Scholar]
  64. Kocharova N. A., Knirel Y. A., Jansson P., Weintraub A. Structure of the O-specific polysaccharide of Vibrio cholerae O9 containing 2-acetamido-2-deoxy-D-galacturonic acid. Carbohydr Res. 2001 Jun 4;332(3):279–284. doi: 10.1016/s0008-6215(01)00069-6. [DOI] [PubMed] [Google Scholar]
  65. Kohli R., Chadha N., Muralidhar K. Presence of tyrosine-O-sulfate in sheep pituitary prolactin. FEBS Lett. 1988 Dec 19;242(1):139–143. doi: 10.1016/0014-5793(88)81002-0. [DOI] [PubMed] [Google Scholar]
  66. Kramerova I. A., Kawaguchi N., Fessler L. I., Nelson R. E., Chen Y., Kramerov A. A., Kusche-Gullberg M., Kramer J. M., Ackley B. D., Sieron A. L. Papilin in development; a pericellular protein with a homology to the ADAMTS metalloproteinases. Development. 2000 Dec;127(24):5475–5485. doi: 10.1242/dev.127.24.5475. [DOI] [PubMed] [Google Scholar]
  67. Kurosaki F. Preparation of monoclonal antibody against plant extracellular glycoprotein with deglycosylated peptide as antigen. Anal Biochem. 1997 Jan 1;244(1):170–172. doi: 10.1006/abio.1996.9876. [DOI] [PubMed] [Google Scholar]
  68. Lan M. S., Batra S. K., Qi W. N., Metzgar R. S., Hollingsworth M. A. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem. 1990 Sep 5;265(25):15294–15299. [PubMed] [Google Scholar]
  69. Lebl M., Pires J., Poncar P., Pokorny V. Evaluation of gaseous hydrogen fluoride as a convenient reagent for parallel cleavage from the solid support. J Comb Chem. 1999 Nov-Dec;1(6):474–479. doi: 10.1021/cc9900302. [DOI] [PubMed] [Google Scholar]
  70. Letourneur O., Gervasi G., Gaïa S., Pagès J., Watelet B., Jolivet M. Characterization of Toxoplasma gondii surface antigen 1 (SAG1) secreted from Pichia pastoris: evidence of hyper O-glycosylation. Biotechnol Appl Biochem. 2001 Feb;33(Pt 1):35–45. doi: 10.1042/ba20000069. [DOI] [PubMed] [Google Scholar]
  71. Lind J. L., Bacic A., Clarke A. E., Anderson M. A. A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. Plant J. 1994 Oct;6(4):491–502. doi: 10.1046/j.1365-313x.1994.6040491.x. [DOI] [PubMed] [Google Scholar]
  72. Litscher E. S., Qi H., Wassarman P. M. Mouse zona pellucida glycoproteins mZP2 and mZP3 undergo carboxy-terminal proteolytic processing in growing oocytes. Biochemistry. 1999 Sep 21;38(38):12280–12287. doi: 10.1021/bi991154y. [DOI] [PubMed] [Google Scholar]
  73. Lloyd K. O., Burchell J., Kudryashov V., Yin B. W., Taylor-Papadimitriou J. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem. 1996 Dec 27;271(52):33325–33334. doi: 10.1074/jbc.271.52.33325. [DOI] [PubMed] [Google Scholar]
  74. Lories V., Cassiman J. J., Van den Berghe H., David G. Multiple distinct membrane heparan sulfate proteoglycans in human lung fibroblasts. J Biol Chem. 1989 Apr 25;264(12):7009–7016. [PubMed] [Google Scholar]
  75. Lower Brian H., Kennelly Peter J. The membrane-associated protein-serine/threonine kinase from Sulfolobus solfataricus is a glycoprotein. J Bacteriol. 2002 May;184(10):2614–2619. doi: 10.1128/JB.184.10.2614-2619.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Malette B., Bleau G. Biochemical characterization of hamster oviductin as a sulphated zona pellucida-binding glycoprotein. Biochem J. 1993 Oct 15;295(Pt 2):437–445. doi: 10.1042/bj2950437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Maley F., Trimble R. B., Tarentino A. L., Plummer T. H., Jr Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem. 1989 Aug 1;180(2):195–204. doi: 10.1016/0003-2697(89)90115-2. [DOI] [PubMed] [Google Scholar]
  78. Marianne T., Perini J. M., Houvenaghel M. C., Tramu G., Lamblin G., Roussel P. Action of trifluoromethanesulfonic acid on highly glycosylated regions of human bronchial mucins. Carbohydr Res. 1986 Aug 15;151:7–19. doi: 10.1016/s0008-6215(00)90325-2. [DOI] [PubMed] [Google Scholar]
  79. Marton L. S., Stefansson K. Exposure of binding sites for antibodies and concanavalin A on collagen by solubilization in hot urea. An immunoblot analysis. J Immunol Methods. 1986 Jul 24;91(2):187–194. doi: 10.1016/0022-1759(86)90478-3. [DOI] [PubMed] [Google Scholar]
  80. Michaëlsson E., Malmström V., Reis S., Engström A., Burkhardt H., Holmdahl R. T cell recognition of carbohydrates on type II collagen. J Exp Med. 1994 Aug 1;180(2):745–749. doi: 10.1084/jem.180.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Müller S., Goletz S., Packer N., Gooley A., Lawson A. M., Hanisch F. G. Localization of O-glycosylation sites on glycopeptide fragments from lactation-associated MUC1. All putative sites within the tandem repeat are glycosylation targets in vivo. J Biol Chem. 1997 Oct 3;272(40):24780–24793. doi: 10.1074/jbc.272.40.24780. [DOI] [PubMed] [Google Scholar]
  82. Naim H. Y., Joberty G., Alfalah M., Jacob R. Temporal association of the N- and O-linked glycosylation events and their implication in the polarized sorting of intestinal brush border sucrase-isomaltase, aminopeptidase N, and dipeptidyl peptidase IV. J Biol Chem. 1999 Jun 18;274(25):17961–17967. doi: 10.1074/jbc.274.25.17961. [DOI] [PubMed] [Google Scholar]
  83. Naim H. Y., Lentze M. J. Impact of O-glycosylation on the function of human intestinal lactase-phlorizin hydrolase. Characterization of glycoforms varying in enzyme activity and localization of O-glycoside addition. J Biol Chem. 1992 Dec 15;267(35):25494–25504. [PubMed] [Google Scholar]
  84. Naim H. Y., Sterchi E. E., Lentze M. J. Biosynthesis of the human sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J Biol Chem. 1988 May 25;263(15):7242–7253. [PubMed] [Google Scholar]
  85. Ogawa H., Hijikata A., Amano M., Kojima K., Fukushima H., Ishizuka I., Kurihara Y., Matsumoto I. Structures and contribution to the antigenicity of oligosaccharides of Japanese cedar (Cryptomeria japonica) pollen allergen Cry j I: relationship between the structures and antigenic epitopes of plant N-linked complex-type glycans. Glycoconj J. 1996 Aug;13(4):555–566. doi: 10.1007/BF00731443. [DOI] [PubMed] [Google Scholar]
  86. Okano M., Nishizaki K., Satoskar A. R., Yoshino T., Masuda Y., Harn D. A., Jr Involvement of carbohydrate on phospholipase A2, a bee-venom allergen, in in vivo antigen-specific IgE synthesis in mice. Allergy. 1999 Aug;54(8):811–818. [PubMed] [Google Scholar]
  87. Paxton R. J., Mooser G., Pande H., Lee T. D., Shively J. E. Sequence analysis of carcinoembryonic antigen: identification of glycosylation sites and homology with the immunoglobulin supergene family. Proc Natl Acad Sci U S A. 1987 Feb;84(4):920–924. doi: 10.1073/pnas.84.4.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Perepelov A. V., Babicka D., Senchenkova S. N., Shashkov A. S., Moll H., Rozalski A., Zähringer U., Knirel Y. A. Structure of the O-specific polysaccharide of Proteus vulgaris O4 containing a new component of bacterial polysaccharides, 4,6-dideoxy-4. Carbohydr Res. 2001 Mar 22;331(2):195–202. doi: 10.1016/s0008-6215(01)00020-9. [DOI] [PubMed] [Google Scholar]
  89. Petersen A., Becker W. M., Moll H., Blümke M., Schlaak M. Studies on the carbohydrate moieties of the timothy grass pollen allergen Phl p I. Electrophoresis. 1995 May;16(5):869–875. doi: 10.1002/elps.11501601144. [DOI] [PubMed] [Google Scholar]
  90. Reis C. A., David L., Seixas M., Burchell J., Sobrinho-Simões M. Expression of fully and under-glycosylated forms of MUC1 mucin in gastric carcinoma. Int J Cancer. 1998 Aug 21;79(4):402–410. doi: 10.1002/(sici)1097-0215(19980821)79:4<402::aid-ijc16>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  91. Romain F., Horn C., Pescher P., Namane A., Riviere M., Puzo G., Barzu O., Marchal G. Deglycosylation of the 45/47-kilodalton antigen complex of Mycobacterium tuberculosis decreases its capacity to elicit in vivo or in vitro cellular immune responses. Infect Immun. 1999 Nov;67(11):5567–5572. doi: 10.1128/iai.67.11.5567-5572.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Rusiniak M. E., Bedi G. S., Back N. Role of carbohydrate in rat plasma thiostatin: deglycosylation destroys cysteine proteinase inhibition activity. Biochem Biophys Res Commun. 1991 Sep 16;179(2):927–932. doi: 10.1016/0006-291x(91)91907-t. [DOI] [PubMed] [Google Scholar]
  93. Sairam M. R., Bhargavi G. N. A role for glycosylation of the alpha subunit in transduction of biological signal in glycoprotein hormones. Science. 1985 Jul 5;229(4708):65–67. doi: 10.1126/science.2990039. [DOI] [PubMed] [Google Scholar]
  94. Sampath T. K., Coughlin J. E., Whetstone R. M., Banach D., Corbett C., Ridge R. J., Ozkaynak E., Oppermann H., Rueger D. C. Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J Biol Chem. 1990 Aug 5;265(22):13198–13205. [PubMed] [Google Scholar]
  95. Schnell D. J., Hori K., Herrmann S. M., Gegg C. V., Etzler M. E. Biosynthesis of DB58 lectin in cell suspension cultures of Dolichos biflorus. Arch Biochem Biophys. 1994 Apr;310(1):229–235. doi: 10.1006/abbi.1994.1161. [DOI] [PubMed] [Google Scholar]
  96. Schäffer Christina, Wugeditsch Thomas, Kählig Hanspeter, Scheberl Andrea, Zayni Sonja, Messner Paul. The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J Biol Chem. 2001 Dec 10;277(8):6230–6239. doi: 10.1074/jbc.M108873200. [DOI] [PubMed] [Google Scholar]
  97. Sheer D. G., Schlom J., Cooper H. L. Purification and composition of the human tumor-associated glycoprotein (TAG-72) defined by monoclonal antibodies CC49 and B72.3. Cancer Res. 1988 Dec 1;48(23):6811–6818. [PubMed] [Google Scholar]
  98. Smith A. T., Santama N., Dacey S., Edwards M., Bray R. C., Thorneley R. N., Burke J. F. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J Biol Chem. 1990 Aug 5;265(22):13335–13343. [PubMed] [Google Scholar]
  99. Sojar H. T., Bahl O. P. A chemical method for the deglycosylation of proteins. Arch Biochem Biophys. 1987 Nov 15;259(1):52–57. doi: 10.1016/0003-9861(87)90469-3. [DOI] [PubMed] [Google Scholar]
  100. Soroka C. J., Farquhar M. G. Characterization of a novel heparan sulfate proteoglycan found in the extracellular matrix of liver sinusoids and basement membranes. J Cell Biol. 1991 Jun;113(5):1231–1241. doi: 10.1083/jcb.113.5.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Sotozono M., Okada Y., Sasagawa T., Nakatou T., Yoshida A., Yokoi T., Kubota M., Tsuji T. Novel monoclonal antibody, SO-MU1, against human gastric MUC5AC apomucin. J Immunol Methods. 1996 Jun 10;192(1-2):87–96. doi: 10.1016/0022-1759(96)00025-7. [DOI] [PubMed] [Google Scholar]
  102. Stähli C., Caravatti M., Aeschbacher M., Kocyba C., Takacs B., Carmann H. Mucin-like carcinoma-associated antigen defined by three monoclonal antibodies against different epitopes. Cancer Res. 1988 Dec 1;48(23):6799–6802. [PubMed] [Google Scholar]
  103. Sylvestre Patricia, Couture-Tosi Evelyne, Mock Michèle. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol. 2002 Jul;45(1):169–178. doi: 10.1046/j.1365-2958.2000.03000.x. [DOI] [PubMed] [Google Scholar]
  104. Tague B. W., Chrispeels M. J. The plant vacuolar protein, phytohemagglutinin, is transported to the vacuole of transgenic yeast. J Cell Biol. 1987 Nov;105(5):1971–1979. doi: 10.1083/jcb.105.5.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Takeichi T., Takeuchi J., Kaneko T., Kawasaki S. Purification and characterization of a galactose-rich basic glycoprotein in tobacco. Plant Physiol. 1998 Feb;116(2):477–483. doi: 10.1104/pp.116.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Tams J. W., Welinder K. G. Mild chemical deglycosylation of horseradish peroxidase yields a fully active, homogeneous enzyme. Anal Biochem. 1995 Jun 10;228(1):48–55. doi: 10.1006/abio.1995.1313. [DOI] [PubMed] [Google Scholar]
  107. Thompson P. E., Keah H. H., Gomme P. T., Stanton P. G., Hearn M. T. Synthesis of peptide amides using Fmoc-based solid-phase procedures on 4-methylbenzhydrylamine resins. Int J Pept Protein Res. 1995 Aug;46(2):174–180. doi: 10.1111/j.1399-3011.1995.tb01333.x. [DOI] [PubMed] [Google Scholar]
  108. Thornton D. J., Howard M., Devine P. L., Sheehan J. K. Methods for separation and deglycosylation of mucin subunits. Anal Biochem. 1995 May 1;227(1):162–167. doi: 10.1006/abio.1995.1266. [DOI] [PubMed] [Google Scholar]
  109. Thotakura N. R., LiCalzi L., Weintraub B. D. The role of carbohydrate in thyrotropin action assessed by a novel approach using enzymatic deglycosylation. J Biol Chem. 1990 Jul 15;265(20):11527–11534. [PubMed] [Google Scholar]
  110. Török Béla, Bucsi Imre, Prakash G. K. Surya, Olah George A. Deprotection and cleavage of peptides bound to Merrifield resin by stable dimethyl ether-poly(hydrogen fluoride) (DMEPHF) complex. a new and convenient reagent for peptide chemistry. Chem Commun (Camb) 2002 Dec 7;(23):2882–2883. doi: 10.1039/b206168f. [DOI] [PubMed] [Google Scholar]
  111. Woodward H. D., Ringler N. J., Selvakumar R., Simet I. M., Bhavanandan V. P., Davidson E. A. Deglycosylation studies on tracheal mucin glycoproteins. Biochemistry. 1987 Aug 25;26(17):5315–5322. doi: 10.1021/bi00391a015. [DOI] [PubMed] [Google Scholar]
  112. Yard B. A., Kahlert S., Engelleiter R., Resch S., Waldherr R., Groffen A. J., van den Heuvel L. P., van der Born J., Berden J. H., Kröger S. Decreased glomerular expression of agrin in diabetic nephropathy and podocytes, cultured in high glucose medium. Exp Nephrol. 2001;9(3):214–222. doi: 10.1159/000052614. [DOI] [PubMed] [Google Scholar]
  113. Yin B. W., Lloyd K. O. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J Biol Chem. 2001 May 21;276(29):27371–27375. doi: 10.1074/jbc.M103554200. [DOI] [PubMed] [Google Scholar]
  114. Yun H. Y., Keutmann H. T., Eipper B. A. Alternative splicing governs sulfation of tyrosine or oligosaccharide on peptidylglycine alpha-amidating monooxygenase. J Biol Chem. 1994 Apr 8;269(14):10946–10955. [PubMed] [Google Scholar]
  115. de Vocht M. L., Scholtmeijer K., van der Vegte E. W., de Vries O. M., Sonveaux N., Wösten H. A., Ruysschaert J. M., Hadziloannou G., Wessels J. G., Robillard G. T. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys J. 1998 Apr;74(4):2059–2068. doi: 10.1016/s0006-3495(98)77912-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. van den Heuvel L. P., van den Born J., Veerkamp J. H., van de Velden T. J., Schenkels L., Monnens L. A., Schröder C. H., Berden J. H. Heparan sulfate proteoglycan from human tubular basement membrane. Comparison with this component from the glomerular basement membrane. Biochim Biophys Acta. 1990 Jun 11;1025(1):67–76. doi: 10.1016/0005-2736(90)90191-p. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES