Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 1;376(Pt 2):525–535. doi: 10.1042/BJ20031154

Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1.

Wendy A Kimber 1, Maria Deak 1, Alan R Prescott 1, Dario R Alessi 1
PMCID: PMC1223793  PMID: 14516276

Abstract

It has been postulated that PtdIns(3,4) P (2), one of the immediate breakdown products of PtdIns(3,4,5) P (3), functions as a signalling molecule in insulin- and growth-factor-stimulated pathways. To date, the t andem- P H-domain-containing p rotein- 1 (TAPP1) and related TAPP2 are still the only known PH-domain-containing proteins that interact strongly and specifically with PtdIns(3,4) P (2). In this study we demonstrate that endogenously expressed TAPP1, is constitutively associated with the protein-tyrosine-phosphatase-like protein-1 (PTPL1 also known as FAP-1). We show that PTPL1 binds to TAPP1 and TAPP2, principally though its first PDZ domain [where PDZ is postsynaptic density protein ( P SD-95)/ Drosophila disc large tumour suppressor ( d lg)/tight junction protein ( Z O1)] and show that this renders PTPL1 capable of associating with PtdIns(3,4) P (2) in vitro. Our data suggest that the binding of TAPP1 to PTPL1 does not influence PTPL1 phosphatase activity, but instead functions to maintain PTPL1 in the cytoplasm. Following stimulation of cells with hydrogen peroxide to induce PtdIns(3,4) P (2) production, PTPL1, complexed to TAPP1, translocates to the plasma membrane. This study provides the first evidence that TAPP1 and PtdIns(3,4) P (2) could function to regulate the membrane localization of PTPL1. We speculate that if PTPL1 was recruited to the plasma membrane by increasing levels of PtdIns(3,4) P (2), it could trigger a negative feedback loop in which phosphoinositide-3-kinase-dependent or other signalling pathways could be switched off by the phosphatase-catalysed dephosphorylation of receptor tyrosine kinases or tyrosine phosphorylated adaptor proteins such as IRS1 or IRS2. Consistent with this notion we observed RNA-interference-mediated knock-down of TAPP1 in HEK-293 cells, enhanced activation and phosphorylation of PKB following IGF1 stimulation.

Full Text

The Full Text of this article is available as a PDF (363.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Caudwell F. B., Andjelkovic M., Hemmings B. A., Cohen P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett. 1996 Dec 16;399(3):333–338. doi: 10.1016/s0014-5793(96)01370-1. [DOI] [PubMed] [Google Scholar]
  2. Andersson S., Davis D. L., Dahlbäck H., Jörnvall H., Russell D. W. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem. 1989 May 15;264(14):8222–8229. [PubMed] [Google Scholar]
  3. Banfić H., Tang X., Batty I. H., Downes C. P., Chen C., Rittenhouse S. E. A novel integrin-activated pathway forms PKB/Akt-stimulatory phosphatidylinositol 3,4-bisphosphate via phosphatidylinositol 3-phosphate in platelets. J Biol Chem. 1998 Jan 2;273(1):13–16. doi: 10.1074/jbc.273.1.13. [DOI] [PubMed] [Google Scholar]
  4. Bompard Guillaume, Martin Marianne, Roy Christian, Vignon Françoise, Freiss Gilles. Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate. J Cell Sci. 2003 Jun 15;116(Pt 12):2519–2530. doi: 10.1242/jcs.00448. [DOI] [PubMed] [Google Scholar]
  5. Bompard Guillaume, Puech Carole, Prébois Christine, Vignon Françoise, Freiss Gilles. Protein-tyrosine phosphatase PTPL1/FAP-1 triggers apoptosis in human breast cancer cells. J Biol Chem. 2002 Sep 26;277(49):47861–47869. doi: 10.1074/jbc.M208950200. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Cheng Alan, Dubé Nadia, Gu Feng, Tremblay Michel L. Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur J Biochem. 2002 Feb;269(4):1050–1059. doi: 10.1046/j.0014-2956.2002.02756.x. [DOI] [PubMed] [Google Scholar]
  8. Collins Barry J., Deak Maria, Arthur J. Simon C., Armit Laura J., Alessi Dario R. In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. EMBO J. 2003 Aug 15;22(16):4202–4211. doi: 10.1093/emboj/cdg407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cuppen E., Gerrits H., Pepers B., Wieringa B., Hendriks W. PDZ motifs in PTP-BL and RIL bind to internal protein segments in the LIM domain protein RIL. Mol Biol Cell. 1998 Mar;9(3):671–683. doi: 10.1091/mbc.9.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cuppen E., Wijers M., Schepens J., Fransen J., Wieringa B., Hendriks W. A FERM domain governs apical confinement of PTP-BL in epithelial cells. J Cell Sci. 1999 Oct;112(Pt 19):3299–3308. doi: 10.1242/jcs.112.19.3299. [DOI] [PubMed] [Google Scholar]
  11. Cuppen E., van Ham M., Pepers B., Wieringa B., Hendriks W. Identification and molecular characterization of BP75, a novel bromodomain-containing protein. FEBS Lett. 1999 Oct 15;459(3):291–298. doi: 10.1016/s0014-5793(99)01191-6. [DOI] [PubMed] [Google Scholar]
  12. Currie R. A., Walker K. S., Gray A., Deak M., Casamayor A., Downes C. P., Cohen P., Alessi D. R., Lucocq J. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J. 1999 Feb 1;337(Pt 3):575–583. [PMC free article] [PubMed] [Google Scholar]
  13. Dickinson Robin J., Williams David J., Slack David N., Williamson Jill, Seternes Ole-Morten, Keyse Stephen M. Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochem J. 2002 May 15;364(Pt 1):145–155. doi: 10.1042/bj3640145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dowler S., Currie R. A., Campbell D. G., Deak M., Kular G., Downes C. P., Alessi D. R. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J. 2000 Oct 1;351(Pt 1):19–31. doi: 10.1042/0264-6021:3510019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dowler S., Currie R. A., Downes C. P., Alessi D. R. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J. 1999 Aug 15;342(Pt 1):7–12. [PMC free article] [PubMed] [Google Scholar]
  16. Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001 May 24;411(6836):494–498. doi: 10.1038/35078107. [DOI] [PubMed] [Google Scholar]
  17. Elchebly M., Payette P., Michaliszyn E., Cromlish W., Collins S., Loy A. L., Normandin D., Cheng A., Himms-Hagen J., Chan C. C. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999 Mar 5;283(5407):1544–1548. doi: 10.1126/science.283.5407.1544. [DOI] [PubMed] [Google Scholar]
  18. Erdmann K. S., Kuhlmann J., Lessmann V., Herrmann L., Eulenburg V., Müller O., Heumann R. The Adenomatous Polyposis Coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain. Oncogene. 2000 Aug 10;19(34):3894–3901. doi: 10.1038/sj.onc.1203725. [DOI] [PubMed] [Google Scholar]
  19. Ferguson K. M., Kavran J. M., Sankaran V. G., Fournier E., Isakoff S. J., Skolnik E. Y., Lemmon M. A. Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol Cell. 2000 Aug;6(2):373–384. doi: 10.1016/s1097-2765(00)00037-x. [DOI] [PubMed] [Google Scholar]
  20. Freeburn Robin W., Wright Karen L., Burgess Steven J., Astoul Emmanuelle, Cantrell Doreen A., Ward Stephen G. Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J Immunol. 2002 Nov 15;169(10):5441–5450. doi: 10.4049/jimmunol.169.10.5441. [DOI] [PubMed] [Google Scholar]
  21. Gray Alexander, Olsson Henric, Batty Ian H., Priganica Larisa, Peter Downes C. Nonradioactive methods for the assay of phosphoinositide 3-kinases and phosphoinositide phosphatases and selective detection of signaling lipids in cell and tissue extracts. Anal Biochem. 2003 Feb 15;313(2):234–245. doi: 10.1016/s0003-2697(02)00607-3. [DOI] [PubMed] [Google Scholar]
  22. Gross C., Heumann R., Erdmann K. S. The protein kinase C-related kinase PRK2 interacts with the protein tyrosine phosphatase PTP-BL via a novel PDZ domain binding motif. FEBS Lett. 2001 May 11;496(2-3):101–104. doi: 10.1016/s0014-5793(01)02401-2. [DOI] [PubMed] [Google Scholar]
  23. Gu M. X., York J. D., Warshawsky I., Majerus P. W. Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to cytoskeletal protein 4.1. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5867–5871. doi: 10.1073/pnas.88.13.5867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Irie S., Hachiya T., Rabizadeh S., Maruyama W., Mukai J., Li Y., Reed J. C., Bredesen D. E., Sato T. A. Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-kappaB activation. FEBS Lett. 1999 Oct 29;460(2):191–198. doi: 10.1016/s0014-5793(99)01324-1. [DOI] [PubMed] [Google Scholar]
  25. Ivanov Vladimir N., Lopez Bergami Pablo, Maulit Gabriel, Sato Taka-Aki, Sassoon David, Ronai Ze'ev. FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol. 2003 May;23(10):3623–3635. doi: 10.1128/MCB.23.10.3623-3635.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. James S. R., Downes C. P., Gigg R., Grove S. J., Holmes A. B., Alessi D. R. Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem J. 1996 May 1;315(Pt 3):709–713. doi: 10.1042/bj3150709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kanai F., Liu H., Field S. J., Akbary H., Matsuo T., Brown G. E., Cantley L. C., Yaffe M. B. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol. 2001 Jul;3(7):675–678. doi: 10.1038/35083070. [DOI] [PubMed] [Google Scholar]
  28. Karathanassis Dimitrios, Stahelin Robert V., Bravo Jerónimo, Perisic Olga, Pacold Christine M., Cho Wonhwa, Williams Roger L. Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 2002 Oct 1;21(19):5057–5068. doi: 10.1093/emboj/cdf519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kimber Wendy A., Trinkle-Mulcahy Laura, Cheung Peter C. F., Deak Maria, Marsden Louisa J., Kieloch Agnieszka, Watt Stephen, Javier Ronald T., Gray Alex, Downes C. Peter. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J. 2002 Feb 1;361(Pt 3):525–536. doi: 10.1042/0264-6021:3610525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lemmon M. A., Ferguson K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J. 2000 Aug 15;350(Pt 1):1–18. [PMC free article] [PubMed] [Google Scholar]
  31. Leslie N. R., Biondi R. M., Alessi D. R. Phosphoinositide-regulated kinases and phosphoinositide phosphatases. Chem Rev. 2001 Aug;101(8):2365–2380. doi: 10.1021/cr000091i. [DOI] [PubMed] [Google Scholar]
  32. Maekawa K., Imagawa N., Naito A., Harada S., Yoshie O., Takagi S. Association of protein-tyrosine phosphatase PTP-BAS with the transcription-factor-inhibitory protein IkappaBalpha through interaction between the PDZ1 domain and ankyrin repeats. Biochem J. 1999 Jan 15;337(Pt 2):179–184. [PMC free article] [PubMed] [Google Scholar]
  33. Marshall Aaron J., Krahn Allyson K., Ma Kewei, Duronio Vincent, Hou Sen. TAPP1 and TAPP2 are targets of phosphatidylinositol 3-kinase signaling in B cells: sustained plasma membrane recruitment triggered by the B-cell antigen receptor. Mol Cell Biol. 2002 Aug;22(15):5479–5491. doi: 10.1128/MCB.22.15.5479-5491.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nakai Y., Irie S., Sato T. A. Identification of IkappaBalpha as a substrate of Fas-associated phosphatase-1. Eur J Biochem. 2000 Dec;267(24):7170–7175. doi: 10.1046/j.1432-1327.2000.01818.x. [DOI] [PubMed] [Google Scholar]
  35. Saras J., Claesson-Welsh L., Heldin C. H., Gonez L. J. Cloning and characterization of PTPL1, a protein tyrosine phosphatase with similarities to cytoskeletal-associated proteins. J Biol Chem. 1994 Sep 30;269(39):24082–24089. [PubMed] [Google Scholar]
  36. Saras J., Franzén P., Aspenström P., Hellman U., Gonez L. J., Heldin C. H. A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1. J Biol Chem. 1997 Sep 26;272(39):24333–24338. doi: 10.1074/jbc.272.39.24333. [DOI] [PubMed] [Google Scholar]
  37. Sato T., Irie S., Kitada S., Reed J. C. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science. 1995 Apr 21;268(5209):411–415. doi: 10.1126/science.7536343. [DOI] [PubMed] [Google Scholar]
  38. Stephens L., Anderson K., Stokoe D., Erdjument-Bromage H., Painter G. F., Holmes A. B., Gaffney P. R., Reese C. B., McCormick F., Tempst P. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science. 1998 Jan 30;279(5351):710–714. doi: 10.1126/science.279.5351.710. [DOI] [PubMed] [Google Scholar]
  39. Stephens Len, Ellson Chris, Hawkins Phillip. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr Opin Cell Biol. 2002 Apr;14(2):203–213. doi: 10.1016/s0955-0674(02)00311-3. [DOI] [PubMed] [Google Scholar]
  40. Sánchez I., Hughes R. T., Mayer B. J., Yee K., Woodgett J. R., Avruch J., Kyriakis J. M., Zon L. I. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature. 1994 Dec 22;372(6508):794–798. doi: 10.1038/372794a0. [DOI] [PubMed] [Google Scholar]
  41. Thomas C. C., Dowler S., Deak M., Alessi D. R., van Aalten D. M. Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. Biochem J. 2001 Sep 1;358(Pt 2):287–294. doi: 10.1042/0264-6021:3580287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thomas Christine C., Deak Maria, Alessi Dario R., van Aalten Daan M. F. High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol. 2002 Jul 23;12(14):1256–1262. doi: 10.1016/s0960-9822(02)00972-7. [DOI] [PubMed] [Google Scholar]
  43. Van der Kaay J., Beck M., Gray A., Downes C. P. Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses. J Biol Chem. 1999 Dec 10;274(50):35963–35968. doi: 10.1074/jbc.274.50.35963. [DOI] [PubMed] [Google Scholar]
  44. Vanhaesebroeck B., Leevers S. J., Ahmadi K., Timms J., Katso R., Driscoll P. C., Woscholski R., Parker P. J., Waterfield M. D. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem. 2001;70:535–602. doi: 10.1146/annurev.biochem.70.1.535. [DOI] [PubMed] [Google Scholar]
  45. Walker S. M., Downes C. P., Leslie N. R. TPIP: a novel phosphoinositide 3-phosphatase. Biochem J. 2001 Dec 1;360(Pt 2):277–283. doi: 10.1042/0264-6021:3600277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang Q., Tonks N. K. Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin, and talin. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):5949–5953. doi: 10.1073/pnas.88.14.5949. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES