Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 1;376(Pt 2):537–544. doi: 10.1042/BJ20031155

Regulation of hypoxia-inducible factor-1alpha by nitric oxide through mitochondria-dependent and -independent pathways.

Jesús Mateo 1, Marta García-Lecea 1, Susana Cadenas 1, Carlos Hernández 1, Salvador Moncada 1
PMCID: PMC1223794  PMID: 14531732

Abstract

Nitric oxide (NO) has been reported both to promote and to inhibit the activity of the transcription factor hypoxia-inducible factor-1 (HIF-1). In order to avoid the pitfalls associated with the use of NO donors, we have developed a human cell line (Tet-iNOS 293) that expresses the inducible NO synthase (iNOS) under the control of a tetracycline-inducible promoter. Using this system to generate finely controlled amounts of NO, we have demonstrated that the stability of the alpha-subunit of HIF-1 is regulated by NO through two separate mechanisms, only one of which is dependent on a functional respiratory chain. HIF-1alpha is unstable in cells maintained at 21% O(2), but is progressively stabilized as the O(2) concentration decreases, resulting in augmented HIF-1 DNA-binding activity. High concentrations of NO (>1 microM) stabilize HIF-1alpha at all O(2) concentrations tested. This effect does not involve the respiratory chain, since it is preserved in cells lacking functional mitochondria (rho(0)-cells) and is not reproduced by other inhibitors of the cytochrome c oxidase. By contrast, lower concentrations of NO (<400 nM) cause a rapid decrease in HIF-1alpha stabilized by exposure of the cells to 3% O(2). This effect of NO is dependent on the inhibition of mitochondrial respiration, since it is mimicked by other inhibitors of mitochondrial respiration, including those not acting at cytochrome c oxidase. We suggest that, although stabilization of HIF-1alpha by high concentrations of NO might have implications in pathophysiological processes, the inhibitory effect of lower NO concentrations is likely to be of physiological relevance.

Full Text

The Full Text of this article is available as a PDF (264.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agani F. H., Pichiule P., Chavez J. C., LaManna J. C. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem. 2000 Nov 17;275(46):35863–35867. doi: 10.1074/jbc.M005643200. [DOI] [PubMed] [Google Scholar]
  2. Agani Faton H., Puchowicz Michelle, Chavez Juan Carlos, Pichiule Paola, LaManna Joseph. Role of nitric oxide in the regulation of HIF-1alpha expression during hypoxia. Am J Physiol Cell Physiol. 2002 Jul;283(1):C178–C186. doi: 10.1152/ajpcell.00381.2001. [DOI] [PubMed] [Google Scholar]
  3. Archer S. L., Freude K. A., Shultz P. J. Effect of graded hypoxia on the induction and function of inducible nitric oxide synthase in rat mesangial cells. Circ Res. 1995 Jul;77(1):21–28. doi: 10.1161/01.res.77.1.21. [DOI] [PubMed] [Google Scholar]
  4. Beltrán B., Orsi A., Clementi E., Moncada S. Oxidative stress and S-nitrosylation of proteins in cells. Br J Pharmacol. 2000 Mar;129(5):953–960. doi: 10.1038/sj.bjp.0703147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown G. C., Cooper C. E. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994 Dec 19;356(2-3):295–298. doi: 10.1016/0014-5793(94)01290-3. [DOI] [PubMed] [Google Scholar]
  6. Brown G. C. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta. 1999 May 5;1411(2-3):351–369. doi: 10.1016/s0005-2728(99)00025-0. [DOI] [PubMed] [Google Scholar]
  7. Bunn H. F., Poyton R. O. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996 Jul;76(3):839–885. doi: 10.1152/physrev.1996.76.3.839. [DOI] [PubMed] [Google Scholar]
  8. Chandel N. S., Maltepe E., Goldwasser E., Mathieu C. E., Simon M. C., Schumacker P. T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11715–11720. doi: 10.1073/pnas.95.20.11715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chandel N. S., McClintock D. S., Feliciano C. E., Wood T. M., Melendez J. A., Rodriguez A. M., Schumacker P. T. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000 Aug 18;275(33):25130–25138. doi: 10.1074/jbc.M001914200. [DOI] [PubMed] [Google Scholar]
  10. Chun Y. S., Yeo E. J., Choi E., Teng C. M., Bae J. M., Kim M. S., Park J. W. Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells. Biochem Pharmacol. 2001 Apr 15;61(8):947–954. doi: 10.1016/s0006-2952(01)00564-0. [DOI] [PubMed] [Google Scholar]
  11. Cleeter M. W., Cooper J. M., Darley-Usmar V. M., Moncada S., Schapira A. H. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 1994 May 23;345(1):50–54. doi: 10.1016/0014-5793(94)00424-2. [DOI] [PubMed] [Google Scholar]
  12. Clementi E., Brown G. C., Foxwell N., Moncada S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1559–1562. doi: 10.1073/pnas.96.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dachs G. U., Tozer G. M. Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur J Cancer. 2000 Aug;36(13 Spec No):1649–1660. doi: 10.1016/s0959-8049(00)00159-3. [DOI] [PubMed] [Google Scholar]
  14. Duranteau J., Chandel N. S., Kulisz A., Shao Z., Schumacker P. T. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem. 1998 May 8;273(19):11619–11624. doi: 10.1074/jbc.273.19.11619. [DOI] [PubMed] [Google Scholar]
  15. Enomoto Noriko, Koshikawa Nobuko, Gassmann Max, Hayashi Jun-Ichi, Takenaga Keizo. Hypoxic induction of hypoxia-inducible factor-1alpha and oxygen-regulated gene expression in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun. 2002 Sep 20;297(2):346–352. doi: 10.1016/s0006-291x(02)02186-1. [DOI] [PubMed] [Google Scholar]
  16. Feelisch M. The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedebergs Arch Pharmacol. 1998 Jul;358(1):113–122. doi: 10.1007/pl00005231. [DOI] [PubMed] [Google Scholar]
  17. Genius J., Fandrey J. Nitric oxide affects the production of reactive oxygen species in hepatoma cells: implications for the process of oxygen sensing. Free Radic Biol Med. 2000 Sep 15;29(6):515–521. doi: 10.1016/s0891-5849(00)00343-9. [DOI] [PubMed] [Google Scholar]
  18. Haddad J. J., Land S. C. A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha. FEBS Lett. 2001 Sep 14;505(2):269–274. doi: 10.1016/s0014-5793(01)02833-2. [DOI] [PubMed] [Google Scholar]
  19. Halliwell Barry. Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett. 2003 Apr 10;540(1-3):3–6. doi: 10.1016/s0014-5793(03)00235-7. [DOI] [PubMed] [Google Scholar]
  20. Hogg N., Darley-Usmar V. M., Wilson M. T., Moncada S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J. 1992 Jan 15;281(Pt 2):419–424. doi: 10.1042/bj2810419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huang L. E., Arany Z., Livingston D. M., Bunn H. F. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 1996 Dec 13;271(50):32253–32259. doi: 10.1074/jbc.271.50.32253. [DOI] [PubMed] [Google Scholar]
  22. Huang L. E., Willmore W. G., Gu J., Goldberg M. A., Bunn H. F. Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J Biol Chem. 1999 Mar 26;274(13):9038–9044. doi: 10.1074/jbc.274.13.9038. [DOI] [PubMed] [Google Scholar]
  23. Ivan M., Kondo K., Yang H., Kim W., Valiando J., Ohh M., Salic A., Asara J. M., Lane W. S., Kaelin W. G., Jr HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001 Apr 5;292(5516):464–468. doi: 10.1126/science.1059817. [DOI] [PubMed] [Google Scholar]
  24. Jaakkola P., Mole D. R., Tian Y. M., Wilson M. I., Gielbert J., Gaskell S. J., von Kriegsheim A., Hebestreit H. F., Mukherji M., Schofield C. J. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001 Apr 5;292(5516):468–472. doi: 10.1126/science.1059796. [DOI] [PubMed] [Google Scholar]
  25. Jewell U. R., Kvietikova I., Scheid A., Bauer C., Wenger R. H., Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J. 2001 May;15(7):1312–1314. [PubMed] [Google Scholar]
  26. Jiang B. H., Semenza G. L., Bauer C., Marti H. H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol. 1996 Oct;271(4 Pt 1):C1172–C1180. doi: 10.1152/ajpcell.1996.271.4.C1172. [DOI] [PubMed] [Google Scholar]
  27. Kimura H., Weisz A., Kurashima Y., Hashimoto K., Ogura T., D'Acquisto F., Addeo R., Makuuchi M., Esumi H. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood. 2000 Jan 1;95(1):189–197. [PubMed] [Google Scholar]
  28. Kimura Hideo, Ogura Tsutomu, Kurashima Yukiko, Weisz Alessandro, Esumi Hiroyasu. Effects of nitric oxide donors on vascular endothelial growth factor gene induction. Biochem Biophys Res Commun. 2002 Aug 30;296(4):976–982. doi: 10.1016/s0006-291x(02)02029-6. [DOI] [PubMed] [Google Scholar]
  29. Metzen Eric, Zhou Jie, Jelkmann Wolfgang, Fandrey Joachim, Brüne Bernhard. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell. 2003 May 3;14(8):3470–3481. doi: 10.1091/mbc.E02-12-0791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  31. Moncada Salvador, Erusalimsky Jorge D. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol. 2002 Mar;3(3):214–220. doi: 10.1038/nrm762. [DOI] [PubMed] [Google Scholar]
  32. Ohh M., Park C. W., Ivan M., Hoffman M. A., Kim T. Y., Huang L. E., Pavletich N., Chau V., Kaelin W. G. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000 Jul;2(7):423–427. doi: 10.1038/35017054. [DOI] [PubMed] [Google Scholar]
  33. Palmer L. A., Gaston B., Johns R. A. Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol. 2000 Dec;58(6):1197–1203. doi: 10.1124/mol.58.6.1197. [DOI] [PubMed] [Google Scholar]
  34. Sandau K. B., Fandrey J., Brüne B. Accumulation of HIF-1alpha under the influence of nitric oxide. Blood. 2001 Feb 15;97(4):1009–1015. doi: 10.1182/blood.v97.4.1009. [DOI] [PubMed] [Google Scholar]
  35. Sandau K. B., Faus H. G., Brüne B. Induction of hypoxia-inducible-factor 1 by nitric oxide is mediated via the PI 3K pathway. Biochem Biophys Res Commun. 2000 Nov 11;278(1):263–267. doi: 10.1006/bbrc.2000.3789. [DOI] [PubMed] [Google Scholar]
  36. Schroedl Clara, McClintock David S., Budinger G. R. Scott, Chandel Navdeep S. Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol. 2002 Nov;283(5):L922–L931. doi: 10.1152/ajplung.00014.2002. [DOI] [PubMed] [Google Scholar]
  37. Semenza G. L. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001 Apr;13(2):167–171. doi: 10.1016/s0955-0674(00)00194-0. [DOI] [PubMed] [Google Scholar]
  38. Semenza G. L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med. 2001 Aug;7(8):345–350. doi: 10.1016/s1471-4914(01)02090-1. [DOI] [PubMed] [Google Scholar]
  39. Semenza Gregg. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002 Sep;64(5-6):993–998. doi: 10.1016/s0006-2952(02)01168-1. [DOI] [PubMed] [Google Scholar]
  40. Sogawa K., Numayama-Tsuruta K., Ema M., Abe M., Abe H., Fujii-Kuriyama Y. Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7368–7373. doi: 10.1073/pnas.95.13.7368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Srinivas V., Leshchinsky I., Sang N., King M. P., Minchenko A., Caro J. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J Biol Chem. 2001 May 7;276(25):21995–21998. doi: 10.1074/jbc.C100177200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sumbayev Vadim V., Budde Andreja, Zhou Jie, Brüne Bernhard. HIF-1 alpha protein as a target for S-nitrosation. FEBS Lett. 2003 Jan 30;535(1-3):106–112. doi: 10.1016/s0014-5793(02)03887-5. [DOI] [PubMed] [Google Scholar]
  43. Vaux E. C., Metzen E., Yeates K. M., Ratcliffe P. J. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood. 2001 Jul 15;98(2):296–302. doi: 10.1182/blood.v98.2.296. [DOI] [PubMed] [Google Scholar]
  44. Wang G. L., Jiang B. H., Rue E. A., Semenza G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510–5514. doi: 10.1073/pnas.92.12.5510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wang G. L., Jiang B. H., Semenza G. L. Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1. Biochem Biophys Res Commun. 1995 Jul 17;212(2):550–556. doi: 10.1006/bbrc.1995.2005. [DOI] [PubMed] [Google Scholar]
  46. Wang G. L., Semenza G. L. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995 Jan 20;270(3):1230–1237. doi: 10.1074/jbc.270.3.1230. [DOI] [PubMed] [Google Scholar]
  47. Williams D. L. S-nitrosothiols and role of metal ions in decomposition to nitric oxide. Methods Enzymol. 1996;268:299–308. doi: 10.1016/s0076-6879(96)68032-x. [DOI] [PubMed] [Google Scholar]
  48. Xu Weiming, Liu Lizhi, Charles Ian G. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J. 2001 Dec 28;16(2):213–215. doi: 10.1096/fj.01-0590fje. [DOI] [PubMed] [Google Scholar]
  49. Yin J. H., Yang D. I., Ku G., Hsu C. Y. iNOS expression inhibits hypoxia-inducible factor-1 activity. Biochem Biophys Res Commun. 2000 Dec 9;279(1):30–34. doi: 10.1006/bbrc.2000.3896. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES