Abstract
The proton conductance of isolated liver mitochondria correlates significantly with body mass in mammals, but not in ectotherms. To establish whether the correlation in mammals is general for endotherms or mammal-specific, we measured proton conductance in mitochondria from birds, the other main group of endotherms, using birds varying in mass over a wide range (nearly 3000-fold), from 13 g zebra finches to 35 kg emus. Respiratory control ratios were higher in mitochondria from larger birds. Mitochondrial proton conductance in liver mitochondria from birds correlated strongly with body mass [respiration rate per mg of protein driving proton leak at 170 mV being 44.7 times (body mass in g)(-0.19)], thus suggesting a general relationship between body mass and proton conductance in endotherms. Mitochondria from larger birds had the same or perhaps greater surface area per mg of protein than mitochondria from smaller birds. Hence, the lower proton conductance was caused not by surface area changes but by some change in the properties of the inner membrane. Liver mitochondria from larger birds had phospholipid fatty acyl chains that were less polyunsaturated and more monounsaturated when compared with those from smaller birds. Phospholipid fatty acyl polyunsaturation correlated positively and monounsaturation correlated negatively with proton conductance. These correlations echo those seen in mammalian liver mitochondria, suggesting that they too are general for endotherms.
Full Text
The Full Text of this article is available as a PDF (132.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brand M. D., Chien L. F., Ainscow E. K., Rolfe D. F., Porter R. K. The causes and functions of mitochondrial proton leak. Biochim Biophys Acta. 1994 Aug 30;1187(2):132–139. doi: 10.1016/0005-2728(94)90099-x. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Couture P., Else P. L., Withers K. W., Hulbert A. J. Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochem J. 1991 Apr 1;275(Pt 1):81–86. doi: 10.1042/bj2750081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brookes P. S., Buckingham J. A., Tenreiro A. M., Hulbert A. J., Brand M. D. The proton permeability of the inner membrane of liver mitochondria from ectothermic and endothermic vertebrates and from obese rats: correlations with standard metabolic rate and phospholipid fatty acid composition. Comp Biochem Physiol B Biochem Mol Biol. 1998 Feb;119(2):325–334. doi: 10.1016/s0305-0491(97)00357-x. [DOI] [PubMed] [Google Scholar]
- Brookes P. S., Hulbert A. J., Brand M. D. The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: no effect of fatty acid composition. Biochim Biophys Acta. 1997 Dec 4;1330(2):157–164. doi: 10.1016/s0005-2736(97)00160-0. [DOI] [PubMed] [Google Scholar]
- Brookes P. S., Rolfe D. F., Brand M. D. The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: comparison with isolated mitochondria. J Membr Biol. 1997 Jan 15;155(2):167–174. doi: 10.1007/s002329900168. [DOI] [PubMed] [Google Scholar]
- Brown G. C., Brand M. D. On the nature of the mitochondrial proton leak. Biochim Biophys Acta. 1991 Aug 2;1059(1):55–62. doi: 10.1016/s0005-2728(05)80187-2. [DOI] [PubMed] [Google Scholar]
- Chaînier F., Roussel D., Georges B., Meister R., Rouanet J. L., Duchamp C., Barré H. Cold acclimation or grapeseed oil feeding affects phospholipid composition and mitochondrial function in duckling skeletal muscle. Lipids. 2000 Oct;35(10):1099–1106. doi: 10.1007/s11745-000-0625-8. [DOI] [PubMed] [Google Scholar]
- Couture P., Hulbert A. J. Membrane fatty acid composition of tissues is related to body mass of mammals. J Membr Biol. 1995 Nov;148(1):27–39. doi: 10.1007/BF00234153. [DOI] [PubMed] [Google Scholar]
- Couture P., Hulbert A. J. Relationship between body mass, tissue metabolic rate, and sodium pump activity in mammalian liver and kidney. Am J Physiol. 1995 Mar;268(3 Pt 2):R641–R650. doi: 10.1152/ajpregu.1995.268.3.R641. [DOI] [PubMed] [Google Scholar]
- Frappell P. B., Hinds D. S., Boggs D. F. Scaling of respiratory variables and the breathing pattern in birds: an allometric and phylogenetic approach. Physiol Biochem Zool. 2001 Jan-Feb;74(1):75–89. doi: 10.1086/319300. [DOI] [PubMed] [Google Scholar]
- Hoch F. L. Cardiolipins and mitochondrial proton-selective leakage. J Bioenerg Biomembr. 1998 Dec;30(6):511–532. doi: 10.1023/a:1020576315771. [DOI] [PubMed] [Google Scholar]
- Hoch F. L. Lipids and thyroid hormones. Prog Lipid Res. 1988;27(3):199–270. doi: 10.1016/0163-7827(88)90013-6. [DOI] [PubMed] [Google Scholar]
- Holliday M. A., Potter D., Jarrah A., Bearg S. The relation of metabolic rate to body weight and organ size. Pediatr Res. 1967 May;1(3):185–195. doi: 10.1203/00006450-196705000-00005. [DOI] [PubMed] [Google Scholar]
- Hulbert A. J., Else P. L., Manolis S. C., Brand M. D. Proton leak in hepatocytes and liver mitochondria from archosaurs (crocodiles) and allometric relationships for ectotherms. J Comp Physiol B. 2002 May 4;172(5):387–397. doi: 10.1007/s00360-002-0264-1. [DOI] [PubMed] [Google Scholar]
- Hulbert A. J., Else P. L. Mechanisms underlying the cost of living in animals. Annu Rev Physiol. 2000;62:207–235. doi: 10.1146/annurev.physiol.62.1.207. [DOI] [PubMed] [Google Scholar]
- Hulbert A. J., Faulks S., Buttemer W. A., Else P. L. Acyl composition of muscle membranes varies with body size in birds. J Exp Biol. 2002 Nov;205(Pt 22):3561–3569. doi: 10.1242/jeb.205.22.3561. [DOI] [PubMed] [Google Scholar]
- Hulbert A. J., Rana Tahira, Couture Patrice. The acyl composition of mammalian phospholipids: an allometric analysis. Comp Biochem Physiol B Biochem Mol Biol. 2002 Jul;132(3):515–527. doi: 10.1016/s1096-4959(02)00066-0. [DOI] [PubMed] [Google Scholar]
- KREBS H. A. Body size and tissue respiration. Biochim Biophys Acta. 1950 Jan;4(1-3):249–269. doi: 10.1016/0006-3002(50)90032-1. [DOI] [PubMed] [Google Scholar]
- Lasiewski R. C., Calder W. A., Jr A preliminary allometric analysis of respiratory variables in resting birds. Respir Physiol. 1971 Jan;11(2):152–166. doi: 10.1016/0034-5687(71)90020-x. [DOI] [PubMed] [Google Scholar]
- Pamplona R., Portero-Otín M., Requena J. R., Thorpe S. R., Herrero A., Barja G. A low degree of fatty acid unsaturation leads to lower lipid peroxidation and lipoxidation-derived protein modification in heart mitochondria of the longevous pigeon than in the short-lived rat. Mech Ageing Dev. 1999 Jan 15;106(3):283–296. doi: 10.1016/s0047-6374(98)00121-3. [DOI] [PubMed] [Google Scholar]
- Pamplona R., Portero-Otín M., Riba D., Ledo F., Gredilla R., Herrero A., Barja G. Heart fatty acid unsaturation and lipid peroxidation, and aging rate, are lower in the canary and the parakeet than in the mouse. Aging (Milano) 1999 Feb;11(1):44–49. [PubMed] [Google Scholar]
- Pamplona R., Prat J., Cadenas S., Rojas C., Pérez-Campo R., López Torres M., Barja G. Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from long-lived species: the pigeon and human case. Mech Ageing Dev. 1996 Jan 5;86(1):53–66. doi: 10.1016/0047-6374(95)01673-2. [DOI] [PubMed] [Google Scholar]
- Pamplona Reinald, Barja Gustavo, Portero-Otín Manuel. Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann N Y Acad Sci. 2002 Apr;959:475–490. doi: 10.1111/j.1749-6632.2002.tb02118.x. [DOI] [PubMed] [Google Scholar]
- Porter R. K., Brand M. D. Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate. Nature. 1993 Apr 15;362(6421):628–630. doi: 10.1038/362628a0. [DOI] [PubMed] [Google Scholar]
- Porter R. K., Brand M. D. Causes of differences in respiration rate of hepatocytes from mammals of different body mass. Am J Physiol. 1995 Nov;269(5 Pt 2):R1213–R1224. doi: 10.1152/ajpregu.1995.269.5.R1213. [DOI] [PubMed] [Google Scholar]
- Porter R. K., Brand M. D. Cellular oxygen consumption depends on body mass. Am J Physiol. 1995 Jul;269(1 Pt 2):R226–R228. doi: 10.1152/ajpregu.1995.269.1.R226. [DOI] [PubMed] [Google Scholar]
- Porter R. K., Hulbert A. J., Brand M. D. Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. Am J Physiol. 1996 Dec;271(6 Pt 2):R1550–R1560. doi: 10.1152/ajpregu.1996.271.6.R1550. [DOI] [PubMed] [Google Scholar]
- Portero-Otín M., Bellmunt M. J., Ruiz M. C., Barja G., Pamplona R. Correlation of fatty acid unsaturation of the major liver mitochondrial phospholipid classes in mammals to their maximum life span potential. Lipids. 2001 May;36(5):491–498. doi: 10.1007/s11745-001-0748-y. [DOI] [PubMed] [Google Scholar]
- Raimbault S., Dridi S., Denjean F., Lachuer J., Couplan E., Bouillaud F., Bordas A., Duchamp C., Taouis M., Ricquier D. An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds. Biochem J. 2001 Feb 1;353(Pt 3):441–444. doi: 10.1042/0264-6021:3530441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roussel D., Chainier F., Rouanet J., Barré H. Increase in the adenine nucleotide translocase content of duckling subsarcolemmal mitochondria during cold acclimation. FEBS Lett. 2000 Jul 14;477(1-2):141–144. doi: 10.1016/s0014-5793(00)01790-7. [DOI] [PubMed] [Google Scholar]
- St-Pierre J., Brand M. D., Boutilier R. G. The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs. J Exp Biol. 2000 May;203(Pt 9):1469–1476. doi: 10.1242/jeb.203.9.1469. [DOI] [PubMed] [Google Scholar]
- Toyomizu Masaaki, Ueda Masatoshi, Sato Shinichi, Seki Yoshinori, Sato Kan, Akiba Yukio. Cold-induced mitochondrial uncoupling and expression of chicken UCP and ANT mRNA in chicken skeletal muscle. FEBS Lett. 2002 Oct 9;529(2-3):313–318. doi: 10.1016/s0014-5793(02)03395-1. [DOI] [PubMed] [Google Scholar]