Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 15;376(Pt 3):687–696. doi: 10.1042/BJ20030887

Processing of N-linked glycans during endoplasmic-reticulum-associated degradation of a short-lived variant of ribophorin I.

Claudia Kitzmüller 1, Andrea Caprini 1, Stuart E H Moore 1, Jean-Pierre Frénoy 1, Eva Schwaiger 1, Odile Kellermann 1, N Erwin Ivessa 1, Myriam Ermonval 1
PMCID: PMC1223801  PMID: 12952521

Abstract

Recently, the role of N-linked glycans in the process of ERAD (endoplasmic reticulum-associated degradation) of proteins has been widely recognized. In the present study, we attempted to delineate further the sequence of events leading from a fully glycosylated soluble protein to its deglycosylated form. Degradation intermediates of a truncated form of ribophorin I, namely RI(332), which contains a single N-linked oligosaccharide and is a substrate for the ERAD/ubiquitin-proteasome pathway, were characterized in HeLa cells under conditions blocking proteasomal degradation. The action of a deoxymannojirimycin- and kifunensine-sensitive alpha1,2-mannosidase was shown here to be required for both further glycan processing and progression of RI(332) in the ERAD pathway. In a first step, the Man(8) isomer B, generated by ER mannosidase I, appears to be the major oligomannoside structure associated with RI(332) intermediates. Some other trimmed N-glycan species, in particular Glc(1)Man(7)GlcNAc(2), were also found on the protein, indicating that several mannosidases might be implicated in the initial trimming of the oligomannoside. Secondly, another intermediate of degradation of RI(332) accumulated after proteasome inhibition. We demonstrated that this completely deglycosylated form arose from the action of an N-glycanase closely linked to the ER membrane. Indeed, the deglycosylated form of the protein remained membrane-associated, while being accessible from the cytoplasm to ubiquitinating enzymes and to added protease. Our results indicate that deglycosylation of a soluble ERAD substrate glycoprotein occurs in at least two distinct steps and is coupled with the retro-translocation of the protein preceding its proteasomal degradation.

Full Text

The Full Text of this article is available as a PDF (232.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayalon-Soffer M., Shenkman M., Lederkremer G. Z. Differential role of mannose and glucose trimming in the ER degradation of asialoglycoprotein receptor subunits. J Cell Sci. 1999 Oct;112(Pt 19):3309–3318. doi: 10.1242/jcs.112.19.3309. [DOI] [PubMed] [Google Scholar]
  2. Bonifacino J. S., Weissman A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol. 1998;14:19–57. doi: 10.1146/annurev.cellbio.14.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cabral C. M., Choudhury P., Liu Y., Sifers R. N. Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J Biol Chem. 2000 Aug 11;275(32):25015–25022. doi: 10.1074/jbc.M910172199. [DOI] [PubMed] [Google Scholar]
  4. Cabral C. M., Liu Y., Sifers R. N. Dissecting glycoprotein quality control in the secretory pathway. Trends Biochem Sci. 2001 Oct;26(10):619–624. doi: 10.1016/s0968-0004(01)01942-9. [DOI] [PubMed] [Google Scholar]
  5. Cabral Christopher M., Liu Yan, Moremen Kelley W., Sifers Richard N. Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs. Mol Biol Cell. 2002 Aug;13(8):2639–2650. doi: 10.1091/mbc.E02-02-0068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chantret Isabelle, Frénoy Jean-Pierre, Moore Stuart E. H. Free-oligosaccharide control in the yeast Saccharomyces cerevisiae: roles for peptide:N-glycanase (Png1p) and vacuolar mannosidase (Ams1p). Biochem J. 2003 Aug 1;373(Pt 3):901–908. doi: 10.1042/BJ20030384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniel P. F., Winchester B., Warren C. D. Mammalian alpha-mannosidases--multiple forms but a common purpose? Glycobiology. 1994 Oct;4(5):551–566. doi: 10.1093/glycob/4.5.551. [DOI] [PubMed] [Google Scholar]
  8. Ellgaard L., Helenius A. ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol. 2001 Aug;13(4):431–437. doi: 10.1016/s0955-0674(00)00233-7. [DOI] [PubMed] [Google Scholar]
  9. Ellgaard L., Molinari M., Helenius A. Setting the standards: quality control in the secretory pathway. Science. 1999 Dec 3;286(5446):1882–1888. doi: 10.1126/science.286.5446.1882. [DOI] [PubMed] [Google Scholar]
  10. Ermonval M., Cacan R., Gorgas K., Haas I. G., Verbert A., Buttin G. Differential fate of glycoproteins carrying a monoglucosylated form of truncated N-glycan in a new CHO line, MadIA214214, selected for a thermosensitive secretory defect. J Cell Sci. 1997 Feb;110(Pt 3):323–336. doi: 10.1242/jcs.110.3.323. [DOI] [PubMed] [Google Scholar]
  11. Ermonval M., Kitzmüller C., Mir A. M., Cacan R., Ivessa N. E. N-glycan structure of a short-lived variant of ribophorin I expressed in the MadIA214 glycosylation-defective cell line reveals the role of a mannosidase that is not ER mannosidase I in the process of glycoprotein degradation. Glycobiology. 2001 Jul;11(7):565–576. doi: 10.1093/glycob/11.7.565. [DOI] [PubMed] [Google Scholar]
  12. Fiebiger Edda, Story Craig, Ploegh Hidde L., Tortorella Domenico. Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein. EMBO J. 2002 Mar 1;21(5):1041–1053. doi: 10.1093/emboj/21.5.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frenkel Zehavit, Gregory Walter, Kornfeld Stuart, Lederkremer Gerardo Z. Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6-5GlcNAc2. J Biol Chem. 2003 Jun 26;278(36):34119–34124. doi: 10.1074/jbc.M305929200. [DOI] [PubMed] [Google Scholar]
  14. Halaban R., Cheng E., Zhang Y., Moellmann G., Hanlon D., Michalak M., Setaluri V., Hebert D. N. Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6210–6215. doi: 10.1073/pnas.94.12.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hase S., Ibuki T., Ikenaka T. Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem. 1984 Jan;95(1):197–203. doi: 10.1093/oxfordjournals.jbchem.a134585. [DOI] [PubMed] [Google Scholar]
  16. Herscovics A. Structure and function of Class I alpha 1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie. 2001 Aug;83(8):757–762. doi: 10.1016/s0300-9084(01)01319-0. [DOI] [PubMed] [Google Scholar]
  17. Herscovics Annette, Romero Pedro A., Tremblay Linda O. The specificity of the yeast and human class I ER alpha 1,2-mannosidases involved in ER quality control is not as strict previously reported. Glycobiology. 2002 Apr;12(4):14G–15G. [PubMed] [Google Scholar]
  18. Hirsch Christian, Blom Daniël, Ploegh Hidde L. A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J. 2003 Mar 3;22(5):1036–1046. doi: 10.1093/emboj/cdg107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hosokawa N., Wada I., Hasegawa K., Yorihuzi T., Tremblay L. O., Herscovics A., Nagata K. A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep. 2001 May;2(5):415–422. doi: 10.1093/embo-reports/kve084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huppa J. B., Ploegh H. L. The alpha chain of the T cell antigen receptor is degraded in the cytosol. Immunity. 1997 Jul;7(1):113–122. doi: 10.1016/s1074-7613(00)80514-2. [DOI] [PubMed] [Google Scholar]
  21. Jakob C. A., Bodmer D., Spirig U., Battig P., Marcil A., Dignard D., Bergeron J. J., Thomas D. Y., Aebi M. Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep. 2001 May;2(5):423–430. doi: 10.1093/embo-reports/kve089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jakob C. A., Burda P., Roth J., Aebi M. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol. 1998 Sep 7;142(5):1223–1233. doi: 10.1083/jcb.142.5.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Johnston J. A., Ward C. L., Kopito R. R. Aggresomes: a cellular response to misfolded proteins. J Cell Biol. 1998 Dec 28;143(7):1883–1898. doi: 10.1083/jcb.143.7.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Karaivanova V. K., Luan P., Spiro R. G. Processing of viral envelope glycoprotein by the endomannosidase pathway: evaluation of host cell specificity. Glycobiology. 1998 Jul;8(7):725–730. doi: 10.1093/glycob/8.7.725. [DOI] [PubMed] [Google Scholar]
  25. Karaivanova V. K., Spiro R. G. Effect of proteasome inhibitors on the release into the cytosol of free polymannose oligosaccharides from glycoproteins. Glycobiology. 2000 Jul;10(7):727–735. doi: 10.1093/glycob/10.7.727. [DOI] [PubMed] [Google Scholar]
  26. Kmiécik D., Herman V., Stroop C. J., Michalski J. C., Mir A. M., Labiau O., Verbert A., Cacan R. Catabolism of glycan moieties of lipid intermediates leads to a single Man5GlcNAc oligosaccharide isomer: a study with permeabilized CHO cells. Glycobiology. 1995 Jul;5(5):483–494. doi: 10.1093/glycob/5.5.483. [DOI] [PubMed] [Google Scholar]
  27. Knop M., Hauser N., Wolf D. H. N-Glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast. 1996 Sep 30;12(12):1229–1238. doi: 10.1002/(sici)1097-0061(19960930)12:12<1229::aid-yea15>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  28. Liu Y., Choudhury P., Cabral C. M., Sifers R. N. Intracellular disposal of incompletely folded human alpha1-antitrypsin involves release from calnexin and post-translational trimming of asparagine-linked oligosaccharides. J Biol Chem. 1997 Mar 21;272(12):7946–7951. doi: 10.1074/jbc.272.12.7946. [DOI] [PubMed] [Google Scholar]
  29. Liu Y., Choudhury P., Cabral C. M., Sifers R. N. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J Biol Chem. 1999 Feb 26;274(9):5861–5867. doi: 10.1074/jbc.274.9.5861. [DOI] [PubMed] [Google Scholar]
  30. Molinari Maurizio, Calanca Verena, Galli Carmela, Lucca Paola, Paganetti Paolo. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science. 2003 Feb 28;299(5611):1397–1400. doi: 10.1126/science.1079474. [DOI] [PubMed] [Google Scholar]
  31. Moore S. E., Spiro R. G. Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis. J Biol Chem. 1994 Apr 29;269(17):12715–12721. [PubMed] [Google Scholar]
  32. Nakatsukasa K., Nishikawa S., Hosokawa N., Nagata K., Endo T. Mnl1p, an alpha -mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J Biol Chem. 2001 Jan 31;276(12):8635–8638. doi: 10.1074/jbc.C100023200. [DOI] [PubMed] [Google Scholar]
  33. Oda Yukako, Hosokawa Nobuko, Wada Ikuo, Nagata Kazuhiro. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science. 2003 Feb 28;299(5611):1394–1397. doi: 10.1126/science.1079181. [DOI] [PubMed] [Google Scholar]
  34. Parodi A. J. Protein glucosylation and its role in protein folding. Annu Rev Biochem. 2000;69:69–93. doi: 10.1146/annurev.biochem.69.1.69. [DOI] [PubMed] [Google Scholar]
  35. Parodi A. J. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem J. 2000 May 15;348(Pt 1):1–13. [PMC free article] [PubMed] [Google Scholar]
  36. Plemper R. K., Wolf D. H. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci. 1999 Jul;24(7):266–270. doi: 10.1016/s0968-0004(99)01420-6. [DOI] [PubMed] [Google Scholar]
  37. Rosenfeld M. G., Marcantonio E. E., Hakimi J., Ort V. M., Atkinson P. H., Sabatini D., Kreibich G. Biosynthesis and processing of ribophorins in the endoplasmic reticulum. J Cell Biol. 1984 Sep;99(3):1076–1082. doi: 10.1083/jcb.99.3.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Roth Jürgen. Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev. 2002 Feb;102(2):285–303. doi: 10.1021/cr000423j. [DOI] [PubMed] [Google Scholar]
  39. Shamu C. E., Story C. M., Rapoport T. A., Ploegh H. L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J Cell Biol. 1999 Oct 4;147(1):45–58. doi: 10.1083/jcb.147.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Spiro R. G. Glucose residues as key determinants in the biosynthesis and quality control of glycoproteins with N-linked oligosaccharides. J Biol Chem. 2000 Nov 17;275(46):35657–35660. doi: 10.1074/jbc.R000022200. [DOI] [PubMed] [Google Scholar]
  41. Suzuki T., Kitajima K., Emori Y., Inoue Y., Inoue S. Site-specific de-N-glycosylation of diglycosylated ovalbumin in hen oviduct by endogenous peptide: N-glycanase as a quality control system for newly synthesized proteins. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6244–6249. doi: 10.1073/pnas.94.12.6244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Suzuki T., Park H., Hollingsworth N. M., Sternglanz R., Lennarz W. J. PNG1, a yeast gene encoding a highly conserved peptide:N-glycanase. J Cell Biol. 2000 May 29;149(5):1039–1052. doi: 10.1083/jcb.149.5.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Suzuki Tadashi, Park Hangil, Lennarz William J. Cytoplasmic peptide:N-glycanase (PNGase) in eukaryotic cells: occurrence, primary structure, and potential functions. FASEB J. 2002 May;16(7):635–641. doi: 10.1096/fj.01-0889rev. [DOI] [PubMed] [Google Scholar]
  44. Tarentino A. L., Plummer T. H., Jr Substrate specificity of Flavobacterium meningosepticum Endo F2 and endo F3: purity is the name of the game. Glycobiology. 1994 Dec;4(6):771–773. doi: 10.1093/glycob/4.6.771. [DOI] [PubMed] [Google Scholar]
  45. Tokunaga F., Brostrom C., Koide T., Arvan P. Endoplasmic reticulum (ER)-associated degradation of misfolded N-linked glycoproteins is suppressed upon inhibition of ER mannosidase I. J Biol Chem. 2000 Dec 29;275(52):40757–40764. doi: 10.1074/jbc.M001073200. [DOI] [PubMed] [Google Scholar]
  46. Tremblay L. O., Herscovics A. Characterization of a cDNA encoding a novel human Golgi alpha 1, 2-mannosidase (IC) involved in N-glycan biosynthesis. J Biol Chem. 2000 Oct 13;275(41):31655–31660. doi: 10.1074/jbc.M004935200. [DOI] [PubMed] [Google Scholar]
  47. Tremblay L. O., Herscovics A. Cloning and expression of a specific human alpha 1,2-mannosidase that trims Man9GlcNAc2 to Man8GlcNAc2 isomer B during N-glycan biosynthesis. Glycobiology. 1999 Oct;9(10):1073–1078. doi: 10.1093/glycob/9.10.1073. [DOI] [PubMed] [Google Scholar]
  48. Wang J., White A. L. Role of calnexin, calreticulin, and endoplasmic reticulum mannosidase I in apolipoprotein(a) intracellular targeting. Biochemistry. 2000 Aug 1;39(30):8993–9000. doi: 10.1021/bi000027v. [DOI] [PubMed] [Google Scholar]
  49. Weng S., Spiro R. G. Demonstration of a peptide:N-glycosidase in the endoplasmic reticulum of rat liver. Biochem J. 1997 Mar 1;322(Pt 2):655–661. doi: 10.1042/bj3220655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Weng S., Spiro R. G. Endoplasmic reticulum kifunensine-resistant alpha-mannosidase is enzymatically and immunologically related to the cytosolic alpha-mannosidase. Arch Biochem Biophys. 1996 Jan 1;325(1):113–123. doi: 10.1006/abbi.1996.0014. [DOI] [PubMed] [Google Scholar]
  51. Wiertz E. J., Jones T. R., Sun L., Bogyo M., Geuze H. J., Ploegh H. L. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell. 1996 Mar 8;84(5):769–779. doi: 10.1016/s0092-8674(00)81054-5. [DOI] [PubMed] [Google Scholar]
  52. Yang M., Omura S., Bonifacino J. S., Weissman A. M. Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J Exp Med. 1998 Mar 16;187(6):835–846. doi: 10.1084/jem.187.6.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. de Virgilio M., Kitzmüller C., Schwaiger E., Klein M., Kreibich G., Ivessa N. E. Degradation of a short-lived glycoprotein from the lumen of the endoplasmic reticulum: the role of N-linked glycans and the unfolded protein response. Mol Biol Cell. 1999 Dec;10(12):4059–4073. doi: 10.1091/mbc.10.12.4059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. de Virgilio M., Weninger H., Ivessa N. E. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem. 1998 Apr 17;273(16):9734–9743. doi: 10.1074/jbc.273.16.9734. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES