Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 15;376(Pt 3):789–794. doi: 10.1042/BJ20031058

Accelerated ubiquitination and proteasome degradation of a genetic variant of inducible nitric oxide synthase.

Wei-Zhong Ying 1, Paul W Sanders 1
PMCID: PMC1223806  PMID: 12959638

Abstract

Biochemical and pharmacological studies have suggested that NOS2 (inducible nitric oxide synthase) has a functional role in the blood pressure response to increases in dietary salt intake. On a high-salt diet, the Dahl/Rapp salt-sensitive (S) strain of rat, a genetic model of salt-sensitive hypertension, did not show increased nitric oxide production. NOS2 from S rats possesses a point mutation that results in substitution of proline for serine at position 714. In the present study, rat NOS2 was shown to be ubiquitinated in vitro and in vivo and to be degraded by the proteasome; this process was accelerated for the S714P mutant. Accelerated degradation of the S714P mutant enzyme accounted for the diminished enzyme activity of this mutant. Hsp90 (heat-shock protein 90) associated with NOS2 and modulated degradation, but was not responsible for the accentuated degradation of the S714P mutant enzyme. The combined findings demonstrate the integral role of ubiquitination and degradation by the proteasome in the regulation of NO production by rat NOS2. Demonstrating that this process is responsible for the abnormal function of the S714P mutant NOS2 in S rats confirms the physiological importance of the proteasome in NOS2 function.

Full Text

The Full Text of this article is available as a PDF (190.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albakri Q. A., Stuehr D. J. Intracellular assembly of inducible NO synthase is limited by nitric oxide-mediated changes in heme insertion and availability. J Biol Chem. 1996 Mar 8;271(10):5414–5421. doi: 10.1074/jbc.271.10.5414. [DOI] [PubMed] [Google Scholar]
  2. Baek K. J., Thiel B. A., Lucas S., Stuehr D. J. Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J Biol Chem. 1993 Oct 5;268(28):21120–21129. [PubMed] [Google Scholar]
  3. Barton M., Vos I., Shaw S., Boer P., D'Uscio L. V., Gröne H. J., Rabelink T. J., Lattmann T., Moreau P., Lüscher T. F. Dysfunctional renal nitric oxide synthase as a determinant of salt-sensitive hypertension: mechanisms of renal artery endothelial dysfunction and role of endothelin for vascular hypertrophy and Glomerulosclerosis. J Am Soc Nephrol. 2000 May;11(5):835–845. doi: 10.1681/ASN.V115835. [DOI] [PubMed] [Google Scholar]
  4. Bender A. T., Demady D. R., Osawa Y. Ubiquitination of neuronal nitric-oxide synthase in vitro and in vivo. J Biol Chem. 2000 Jun 9;275(23):17407–17411. doi: 10.1074/jbc.M000155200. [DOI] [PubMed] [Google Scholar]
  5. Bender A. T., Silverstein A. M., Demady D. R., Kanelakis K. C., Noguchi S., Pratt W. B., Osawa Y. Neuronal nitric-oxide synthase is regulated by the Hsp90-based chaperone system in vivo. J Biol Chem. 1999 Jan 15;274(3):1472–1478. doi: 10.1074/jbc.274.3.1472. [DOI] [PubMed] [Google Scholar]
  6. Bercovich B., Stancovski I., Mayer A., Blumenfeld N., Laszlo A., Schwartz A. L., Ciechanover A. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem. 1997 Apr 4;272(14):9002–9010. doi: 10.1074/jbc.272.14.9002. [DOI] [PubMed] [Google Scholar]
  7. Blasko Eric, Glaser Charles B., Devlin James J., Xia Wei, Feldman Richard I., Polokoff Mark A., Phillips Gary B., Whitlow Marc, Auld Douglas S., McMillan Kirk. Mechanistic studies with potent and selective inducible nitric-oxide synthase dimerization inhibitors. J Biol Chem. 2001 Oct 31;277(1):295–302. doi: 10.1074/jbc.M105691200. [DOI] [PubMed] [Google Scholar]
  8. Brouet A., Sonveaux P., Dessy C., Balligand J. L., Feron O. Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem. 2001 Jun 25;276(35):32663–32669. doi: 10.1074/jbc.M101371200. [DOI] [PubMed] [Google Scholar]
  9. Chen P. Y., Gladish R. D., Sanders P. W. Vascular smooth muscle nitric oxide synthase anomalies in Dahl/Rapp salt-sensitive rats. Hypertension. 1998 Apr;31(4):918–924. doi: 10.1161/01.hyp.31.4.918. [DOI] [PubMed] [Google Scholar]
  10. Chen P. Y., Sanders P. W. L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest. 1991 Nov;88(5):1559–1567. doi: 10.1172/JCI115467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen P. Y., Sanders P. W. Role of nitric oxide synthesis in salt-sensitive hypertension in Dahl/Rapp rats. Hypertension. 1993 Dec;22(6):812–818. doi: 10.1161/01.hyp.22.6.812. [DOI] [PubMed] [Google Scholar]
  12. Chen P. Y., St John P. L., Kirk K. A., Abrahamson D. R., Sanders P. W. Hypertensive nephrosclerosis in the Dahl/Rapp rat. Initial sites of injury and effect of dietary L-arginine supplementation. Lab Invest. 1993 Feb;68(2):174–184. [PubMed] [Google Scholar]
  13. Craiu A., Gaczynska M., Akopian T., Gramm C. F., Fenteany G., Goldberg A. L., Rock K. L. Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem. 1997 May 16;272(20):13437–13445. doi: 10.1074/jbc.272.20.13437. [DOI] [PubMed] [Google Scholar]
  14. DAHL L. K., HEINE M., TASSINARI L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature. 1962 May 5;194:480–482. doi: 10.1038/194480b0. [DOI] [PubMed] [Google Scholar]
  15. Dick L. R., Cruikshank A. A., Destree A. T., Grenier L., McCormack T. A., Melandri F. D., Nunes S. L., Palombella V. J., Parent L. A., Plamondon L. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem. 1997 Jan 3;272(1):182–188. doi: 10.1074/jbc.272.1.182. [DOI] [PubMed] [Google Scholar]
  16. Dick L. R., Cruikshank A. A., Grenier L., Melandri F. D., Nunes S. L., Stein R. L. Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone. J Biol Chem. 1996 Mar 29;271(13):7273–7276. doi: 10.1074/jbc.271.13.7273. [DOI] [PubMed] [Google Scholar]
  17. García-Cardeña G., Fan R., Shah V., Sorrentino R., Cirino G., Papapetropoulos A., Sessa W. C. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 1998 Apr 23;392(6678):821–824. doi: 10.1038/33934. [DOI] [PubMed] [Google Scholar]
  18. Ghosh D. K., Rashid M. B., Crane B., Taskar V., Mast M., Misukonis M. A., Weinberg J. B., Eissa N. T. Characterization of key residues in the subdomain encoded by exons 8 and 9 of human inducible nitric oxide synthase: a critical role for Asp-280 in substrate binding and subunit interactions. Proc Natl Acad Sci U S A. 2001 Aug 21;98(18):10392–10397. doi: 10.1073/pnas.181251298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Glickman Michael H., Ciechanover Aaron. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002 Apr;82(2):373–428. doi: 10.1152/physrev.00027.2001. [DOI] [PubMed] [Google Scholar]
  20. Gratton J. P., Fontana J., O'Connor D. S., Garcia-Cardena G., McCabe T. J., Sessa W. C. Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem. 2000 Jul 21;275(29):22268–22272. doi: 10.1074/jbc.M001644200. [DOI] [PubMed] [Google Scholar]
  21. Hevel J. M., White K. A., Marletta M. A. Purification of the inducible murine macrophage nitric oxide synthase. Identification as a flavoprotein. J Biol Chem. 1991 Dec 5;266(34):22789–22791. [PubMed] [Google Scholar]
  22. Imamura T., Haruta T., Takata Y., Usui I., Iwata M., Ishihara H., Ishiki M., Ishibashi O., Ueno E., Sasaoka T. Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome. J Biol Chem. 1998 May 1;273(18):11183–11188. doi: 10.1074/jbc.273.18.11183. [DOI] [PubMed] [Google Scholar]
  23. Joazeiro C. A., Weissman A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell. 2000 Sep 1;102(5):549–552. doi: 10.1016/s0092-8674(00)00077-5. [DOI] [PubMed] [Google Scholar]
  24. Montagnoli A., Fiore F., Eytan E., Carrano A. C., Draetta G. F., Hershko A., Pagano M. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 1999 May 1;13(9):1181–1189. doi: 10.1101/gad.13.9.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Musial A., Eissa N. T. Inducible nitric-oxide synthase is regulated by the proteasome degradation pathway. J Biol Chem. 2001 Apr 18;276(26):24268–24273. doi: 10.1074/jbc.M100725200. [DOI] [PubMed] [Google Scholar]
  26. Nunokawa Y., Ishida N., Tanaka S. Promoter analysis of human inducible nitric oxide synthase gene associated with cardiovascular homeostasis. Biochem Biophys Res Commun. 1994 Apr 29;200(2):802–807. doi: 10.1006/bbrc.1994.1522. [DOI] [PubMed] [Google Scholar]
  27. Pratt W. B. The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol. 1997;37:297–326. doi: 10.1146/annurev.pharmtox.37.1.297. [DOI] [PubMed] [Google Scholar]
  28. Rapp J. P. Dahl salt-susceptible and salt-resistant rats. A review. Hypertension. 1982 Nov-Dec;4(6):753–763. doi: 10.1161/01.hyp.4.6.753. [DOI] [PubMed] [Google Scholar]
  29. Rapp J. P., Dene H. Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension. 1985 May-Jun;7(3 Pt 1):340–349. [PubMed] [Google Scholar]
  30. Richards M. K., Marletta M. A. Characterization of neuronal nitric oxide synthase and a C415H mutant, purified from a baculovirus overexpression system. Biochemistry. 1994 Dec 13;33(49):14723–14732. doi: 10.1021/bi00253a010. [DOI] [PubMed] [Google Scholar]
  31. Rodriguez-Pascual F., Hausding M., Ihrig-Biedert I., Furneaux H., Levy A. P., Förstermann U., Kleinert H. Complex contribution of the 3'-untranslated region to the expressional regulation of the human inducible nitric-oxide synthase gene. Involvement of the RNA-binding protein HuR. J Biol Chem. 2000 Aug 25;275(34):26040–26049. doi: 10.1074/jbc.M910460199. [DOI] [PubMed] [Google Scholar]
  32. Rudd M. A., Trolliet M., Hope S., Scribner A. W., Daumerie G., Toolan G., Cloutier T., Loscalzo J. Salt-induced hypertension in Dahl salt-resistant and salt-sensitive rats with NOS II inhibition. Am J Physiol. 1999 Aug;277(2 Pt 2):H732–H739. doi: 10.1152/ajpheart.1999.277.2.H732. [DOI] [PubMed] [Google Scholar]
  33. Schmidt H. H., Pollock J. S., Nakane M., Gorsky L. D., Förstermann U., Murad F. Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):365–369. doi: 10.1073/pnas.88.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sivo Zsuzsa, Malo Brigitte, Dutil Julie, Deng Alan Y. Accelerated congenics for mapping two blood pressure quantitative trait loci on chromosome 10 of Dahl rats. J Hypertens. 2002 Jan;20(1):45–53. doi: 10.1097/00004872-200201000-00008. [DOI] [PubMed] [Google Scholar]
  35. Solomon V., Baracos V., Sarraf P., Goldberg A. L. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12602–12607. doi: 10.1073/pnas.95.21.12602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tan D. Y., Meng S., Cason G. W., Manning R. D., Jr Mechanisms of salt-sensitive hypertension: role of inducible nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2000 Dec;279(6):R2297–R2303. doi: 10.1152/ajpregu.2000.279.6.R2297. [DOI] [PubMed] [Google Scholar]
  37. Weissman A. M. Regulating protein degradation by ubiquitination. Immunol Today. 1997 Apr;18(4):189–198. doi: 10.1016/s0167-5699(97)84666-x. [DOI] [PubMed] [Google Scholar]
  38. Yewdell J. W. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol. 2001 Jul;11(7):294–297. doi: 10.1016/s0962-8924(01)02030-x. [DOI] [PubMed] [Google Scholar]
  39. Ying W. Z., Xia H., Sanders P. W. Nitric oxide synthase (NOS2) mutation in Dahl/Rapp rats decreases enzyme stability. Circ Res. 2001 Aug 17;89(4):317–322. doi: 10.1161/hh1601.094625. [DOI] [PubMed] [Google Scholar]
  40. Yu Zhiyuan, Zhang Wenzheng, Kone Bruce C. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. Biochem J. 2002 Oct 1;367(Pt 1):97–105. doi: 10.1042/BJ20020588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yui Y., Hattori R., Kosuga K., Eizawa H., Hiki K., Kawai C. Purification of nitric oxide synthase from rat macrophages. J Biol Chem. 1991 Jul 5;266(19):12544–12547. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES