Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 15;376(Pt 3):707–715. doi: 10.1042/BJ20031021

The PAX6 gene is activated by the basic helix-loop-helix transcription factor NeuroD/BETA2.

Eleonora Marsich 1, Amedeo Vetere 1, Matteo Di Piazza 1, Gianluca Tell 1, Sergio Paoletti 1
PMCID: PMC1223810  PMID: 12962539

Abstract

PAX6 is a transcription factor that plays an important role during pancreatic morphogenesis. The aim of the present study is to identify the upstream activator(s) of the PAX6 gene possibly involved in the early stages of pancreatic differentiation. Recently, individual elements regulating PAX6 gene activity in the pancreas have been identified in a 1100 bp Spe / Hin cII fragment 4.6 kb upstream of exon 0. Preliminary sequence analysis of this region revealed some potential DNA-binding sites (E boxes) specific for the binding of basic helix-loop-helix transcription factors. By using electrophoretic mobility shift assays, we demonstrated that both nuclear protein extracts from insulin-secreting RINm5F cells and in vitro -translated NeuroD/BETA2 can bind specifically to these E boxes. Furthermore, by transient transfection experiments we demonstrated that the expression of basic helix-loop-helix transcription factor NeuroD/BETA2 can induce activation of the PAX6 promoter in the NIH-3T3 cell line. Thus we show that NeuroD/BETA2 is involved in the activation of the expression of PAX6 through E boxes in the PAX6 promoter localized in a 1.1 kb sequence within the 4.6 kb untranslated region upstream of exon 0.

Full Text

The Full Text of this article is available as a PDF (186.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bopp D., Burri M., Baumgartner S., Frigerio G., Noll M. Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell. 1986 Dec 26;47(6):1033–1040. doi: 10.1016/0092-8674(86)90818-4. [DOI] [PubMed] [Google Scholar]
  2. Callaerts P., Halder G., Gehring W. J. PAX-6 in development and evolution. Annu Rev Neurosci. 1997;20:483–532. doi: 10.1146/annurev.neuro.20.1.483. [DOI] [PubMed] [Google Scholar]
  3. Chalepakis G., Stoykova A., Wijnholds J., Tremblay P., Gruss P. Pax: gene regulators in the developing nervous system. J Neurobiol. 1993 Oct;24(10):1367–1384. doi: 10.1002/neu.480241009. [DOI] [PubMed] [Google Scholar]
  4. Dohrmann C., Gruss P., Lemaire L. Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas. Mech Dev. 2000 Mar 15;92(1):47–54. doi: 10.1016/s0925-4773(99)00324-x. [DOI] [PubMed] [Google Scholar]
  5. Dozier C., Carrière C., Grévin D., Martin P., Quatannens B., Stéhelin D., Saule S. Structure and DNA-binding properties of Pax-QNR, a paired box- and homeobox-containing gene. Cell Growth Differ. 1993 Apr;4(4):281–289. [PubMed] [Google Scholar]
  6. Edlund H. Transcribing pancreas. Diabetes. 1998 Dec;47(12):1817–1823. doi: 10.2337/diabetes.47.12.1817. [DOI] [PubMed] [Google Scholar]
  7. Edmondson D. G., Olson E. N. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 1989 May;3(5):628–640. doi: 10.1101/gad.3.5.628. [DOI] [PubMed] [Google Scholar]
  8. Frigerio G., Burri M., Bopp D., Baumgartner S., Noll M. Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell. 1986 Dec 5;47(5):735–746. doi: 10.1016/0092-8674(86)90516-7. [DOI] [PubMed] [Google Scholar]
  9. Göbel V., Lipkowitz S., Kozak C. A., Kirsch I. R. NSCL-2: a basic domain helix-loop-helix gene expressed in early neurogenesis. Cell Growth Differ. 1992 Mar;3(3):143–148. [PubMed] [Google Scholar]
  10. Hill M. E., Asa S. L., Drucker D. J. Essential requirement for Pax6 in control of enteroendocrine proglucagon gene transcription. Mol Endocrinol. 1999 Sep;13(9):1474–1486. doi: 10.1210/mend.13.9.0340. [DOI] [PubMed] [Google Scholar]
  11. Kammandel B., Chowdhury K., Stoykova A., Aparicio S., Brenner S., Gruss P. Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Dev Biol. 1999 Jan 1;205(1):79–97. doi: 10.1006/dbio.1998.9128. [DOI] [PubMed] [Google Scholar]
  12. Larsson L. I. On the development of the islets of Langerhans. Microsc Res Tech. 1998 Nov 15;43(4):284–291. doi: 10.1002/(SICI)1097-0029(19981115)43:4<284::AID-JEMT2>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  13. Lassar A. B., Davis R. L., Wright W. E., Kadesch T., Murre C., Voronova A., Baltimore D., Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell. 1991 Jul 26;66(2):305–315. doi: 10.1016/0092-8674(91)90620-e. [DOI] [PubMed] [Google Scholar]
  14. Lee J. E., Hollenberg S. M., Snider L., Turner D. L., Lipnick N., Weintraub H. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science. 1995 May 12;268(5212):836–844. doi: 10.1126/science.7754368. [DOI] [PubMed] [Google Scholar]
  15. Macdonald R., Wilson S. W. Pax proteins and eye development. Curr Opin Neurobiol. 1996 Feb;6(1):49–56. doi: 10.1016/s0959-4388(96)80008-0. [DOI] [PubMed] [Google Scholar]
  16. Mansouri A., Goudreau G., Gruss P. Pax genes and their role in organogenesis. Cancer Res. 1999 Apr 1;59(7 Suppl):1707s–1710s. [PubMed] [Google Scholar]
  17. Mansouri A, St-Onge L, Gruss P. Role of Genes in Endoderm-derived Organs. Trends Endocrinol Metab. 1999 May;10(4):164–167. doi: 10.1016/s1043-2760(98)00133-7. [DOI] [PubMed] [Google Scholar]
  18. Murre C., McCaw P. S., Vaessin H., Caudy M., Jan L. Y., Jan Y. N., Cabrera C. V., Buskin J. N., Hauschka S. D., Lassar A. B. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell. 1989 Aug 11;58(3):537–544. doi: 10.1016/0092-8674(89)90434-0. [DOI] [PubMed] [Google Scholar]
  19. Mutoh H., Fung B. P., Naya F. J., Tsai M. J., Nishitani J., Leiter A. B. The basic helix-loop-helix transcription factor BETA2/NeuroD is expressed in mammalian enteroendocrine cells and activates secretin gene expression. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3560–3564. doi: 10.1073/pnas.94.8.3560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Naya F. J., Huang H. P., Qiu Y., Mutoh H., DeMayo F. J., Leiter A. B., Tsai M. J. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 1997 Sep 15;11(18):2323–2334. doi: 10.1101/gad.11.18.2323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Naya F. J., Stellrecht C. M., Tsai M. J. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 1995 Apr 15;9(8):1009–1019. doi: 10.1101/gad.9.8.1009. [DOI] [PubMed] [Google Scholar]
  22. Noll M. Evolution and role of Pax genes. Curr Opin Genet Dev. 1993 Aug;3(4):595–605. doi: 10.1016/0959-437x(93)90095-7. [DOI] [PubMed] [Google Scholar]
  23. Peers B., Sharma S., Johnson T., Kamps M., Montminy M. The pancreatic islet factor STF-1 binds cooperatively with Pbx to a regulatory element in the somatostatin promoter: importance of the FPWMK motif and of the homeodomain. Mol Cell Biol. 1995 Dec;15(12):7091–7097. doi: 10.1128/mcb.15.12.7091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Plaza S., Dozier C., Turque N., Saule S. Quail Pax-6 (Pax-QNR) mRNAs are expressed from two promoters used differentially during retina development and neuronal differentiation. Mol Cell Biol. 1995 Jun;15(6):3344–3353. doi: 10.1128/mcb.15.6.3344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Polak M., Bouchareb-Banaei L., Scharfmann R., Czernichow P. Early pattern of differentiation in the human pancreas. Diabetes. 2000 Feb;49(2):225–232. doi: 10.2337/diabetes.49.2.225. [DOI] [PubMed] [Google Scholar]
  26. Poulin G., Turgeon B., Drouin J. NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol Cell Biol. 1997 Nov;17(11):6673–6682. doi: 10.1128/mcb.17.11.6673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sander M., Neubüser A., Kalamaras J., Ee H. C., Martin G. R., German M. S. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 1997 Jul 1;11(13):1662–1673. doi: 10.1101/gad.11.13.1662. [DOI] [PubMed] [Google Scholar]
  28. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Slack J. M. Developmental biology of the pancreas. Development. 1995 Jun;121(6):1569–1580. doi: 10.1242/dev.121.6.1569. [DOI] [PubMed] [Google Scholar]
  30. Smith S. B., Ee H. C., Conners J. R., German M. S. Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol. 1999 Dec;19(12):8272–8280. doi: 10.1128/mcb.19.12.8272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sosa-Pineda B., Chowdhury K., Torres M., Oliver G., Gruss P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature. 1997 Mar 27;386(6623):399–402. doi: 10.1038/386399a0. [DOI] [PubMed] [Google Scholar]
  32. St-Onge L., Sosa-Pineda B., Chowdhury K., Mansouri A., Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 1997 May 22;387(6631):406–409. doi: 10.1038/387406a0. [DOI] [PubMed] [Google Scholar]
  33. Treisman J., Harris E., Desplan C. The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes Dev. 1991 Apr;5(4):594–604. doi: 10.1101/gad.5.4.594. [DOI] [PubMed] [Google Scholar]
  34. Vetere Amedeo, Marsich Eleonora, Di Piazza Matteo, Koncan Raffaella, Micali Fulvio, Paoletti Sergio. Neurogenin3 triggers beta-cell differentiation of retinoic acid-derived endoderm cells. Biochem J. 2003 May 1;371(Pt 3):831–841. doi: 10.1042/BJ20021524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Walther C., Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development. 1991 Dec;113(4):1435–1449. doi: 10.1242/dev.113.4.1435. [DOI] [PubMed] [Google Scholar]
  36. Walther C., Guenet J. L., Simon D., Deutsch U., Jostes B., Goulding M. D., Plachov D., Balling R., Gruss P. Pax: a murine multigene family of paired box-containing genes. Genomics. 1991 Oct;11(2):424–434. doi: 10.1016/0888-7543(91)90151-4. [DOI] [PubMed] [Google Scholar]
  37. Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell. 1993 Dec 31;75(7):1241–1244. doi: 10.1016/0092-8674(93)90610-3. [DOI] [PubMed] [Google Scholar]
  38. Wright W. E., Sassoon D. A., Lin V. K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell. 1989 Feb 24;56(4):607–617. doi: 10.1016/0092-8674(89)90583-7. [DOI] [PubMed] [Google Scholar]
  39. Zhang Y., Babin J., Feldhaus A. L., Singh H., Sharp P. A., Bina M. HTF4: a new human helix-loop-helix protein. Nucleic Acids Res. 1991 Aug 25;19(16):4555–4555. doi: 10.1093/nar/19.16.4555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhang Y., Emmons S. W. Specification of sense-organ identity by a Caenorhabditis elegans Pax-6 homologue. Nature. 1995 Sep 7;377(6544):55–59. doi: 10.1038/377055a0. [DOI] [PubMed] [Google Scholar]
  41. Zheng J. B., Zhou Y. H., Maity T., Liao W. S., Saunders G. F. Activation of the human PAX6 gene through the exon 1 enhancer by transcription factors SEF and Sp1. Nucleic Acids Res. 2001 Oct 1;29(19):4070–4078. doi: 10.1093/nar/29.19.4070. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES