Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 15;376(Pt 3):725–732. doi: 10.1042/BJ20030888

Ceramide and glutathione define two independently regulated pathways of cell death initiated by p53 in Molt-4 leukaemia cells.

Wissal El-Assaad 1, Lina Kozhaya 1, Sawsan Araysi 1, Shoghag Panjarian 1, Fadi F Bitar 1, Elizabeth Baz 1, Marwan E El-Sabban 1, Ghassan S Dbaibo 1
PMCID: PMC1223811  PMID: 12967322

Abstract

The tumour suppressor p53 induces cell death by launching several pathways that are either dependent on or independent of gene transcription. Accumulation of the sphingolipid ceramide and reactive oxygen species are among these pathways. Crossregulation of these two pathways is possible owing to the demonstrated inhibition of neutral sphingomyelinase by glutathione, the predominant cellular antioxidant, and has been observed in some cytokine-dependent cell-death models. In a model of irradiation-induced cell death of Molt-4 leukaemia cells, it was found that ceramide accumulation and glutathione depletion were dependent on p53 up-regulation. The loss of p53 owing to expression of the papilloma virus E6 protein inhibited both pathways after irradiation. However, in this model, these two pathways appeared to be independently regulated on the basis of the following observations: (1) glutathione supplementation or depletion did not alter irradiation-induced ceramide accumulation, (2) exogenous ceramide treatment did not induce glutathione depletion, (3) glutathione depletion was dependent on new protein synthesis, whereas ceramide accumulation was independent of it and (4) caspase activation was required for ceramide accumulation but not for glutathione depletion. Furthermore, caspase 9 activation, which is dependent on the release of mitochondrial cytochrome c, was not required for ceramide accumulation. This suggested that a caspase, other than caspase 9, was necessary for ceramide accumulation. Interestingly, Bcl-2 expression inhibited these pathways, indicating a possible role for mitochondria in regulating both pathways. These findings indicate that these two pathways exhibit cross-regulation in cytokine-dependent, but not in p53-dependent, cell-death models.

Full Text

The Full Text of this article is available as a PDF (149.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrieu-Abadie N., Gouazé V., Salvayre R., Levade T. Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic Biol Med. 2001 Sep 15;31(6):717–728. doi: 10.1016/s0891-5849(01)00655-4. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bielawska A., Perry D. K., Hannun Y. A. Determination of ceramides and diglycerides by the diglyceride kinase assay. Anal Biochem. 2001 Nov 15;298(2):141–150. doi: 10.1006/abio.2001.5342. [DOI] [PubMed] [Google Scholar]
  4. Birbes H., El Bawab S., Hannun Y. A., Obeid L. M. Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 2001 Dec;15(14):2669–2679. doi: 10.1096/fj.01-0539com. [DOI] [PubMed] [Google Scholar]
  5. Boix J., Fibla J., Yuste V., Piulats J. M., Llecha N., Comella J. X. Serum deprivation and protein synthesis inhibition induce two different apoptotic processes in N18 neuroblastoma cells. Exp Cell Res. 1998 Feb 1;238(2):422–429. doi: 10.1006/excr.1997.3852. [DOI] [PubMed] [Google Scholar]
  6. Buttke T. M., Sandstrom P. A. Oxidative stress as a mediator of apoptosis. Immunol Today. 1994 Jan;15(1):7–10. doi: 10.1016/0167-5699(94)90018-3. [DOI] [PubMed] [Google Scholar]
  7. Caelles C., Helmberg A., Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature. 1994 Jul 21;370(6486):220–223. doi: 10.1038/370220a0. [DOI] [PubMed] [Google Scholar]
  8. Chao C., Saito S., Kang J., Anderson C. W., Appella E., Xu Y. p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J. 2000 Sep 15;19(18):4967–4975. doi: 10.1093/emboj/19.18.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chmura S. J., Nodzenski E., Beckett M. A., Kufe D. W., Quintans J., Weichselbaum R. R. Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res. 1997 Apr 1;57(7):1270–1275. [PubMed] [Google Scholar]
  10. Dbaibo G. S., El-Assaad W., Krikorian A., Liu B., Diab K., Idriss N. Z., El-Sabban M., Driscoll T. A., Perry D. K., Hannun Y. A. Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death. FEBS Lett. 2001 Aug 10;503(1):7–12. doi: 10.1016/s0014-5793(01)02625-4. [DOI] [PubMed] [Google Scholar]
  11. Dbaibo G. S., Perry D. K., Gamard C. J., Platt R., Poirier G. G., Obeid L. M., Hannun Y. A. Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-alpha: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J Exp Med. 1997 Feb 3;185(3):481–490. doi: 10.1084/jem.185.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dbaibo G. S., Pushkareva M. Y., Rachid R. A., Alter N., Smyth M. J., Obeid L. M., Hannun Y. A. p53-dependent ceramide response to genotoxic stress. J Clin Invest. 1998 Jul 15;102(2):329–339. doi: 10.1172/JCI1180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Do Tamara N., Rosal Ramon V., Drew Lisa, Raffo Anthony J., Michl Josef, Pincus Matthew R., Friedman Fred K., Petrylak Daniel P., Cassai Nicholas, Szmulewicz Joseph. Preferential induction of necrosis in human breast cancer cells by a p53 peptide derived from the MDM2 binding site. Oncogene. 2003 Mar 13;22(10):1431–1444. doi: 10.1038/sj.onc.1206258. [DOI] [PubMed] [Google Scholar]
  14. García-Ruiz C., Colell A., Marí M., Morales A., Fernández-Checa J. C. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997 Apr 25;272(17):11369–11377. doi: 10.1074/jbc.272.17.11369. [DOI] [PubMed] [Google Scholar]
  15. Goossens V., Grooten J., De Vos K., Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8115–8119. doi: 10.1073/pnas.92.18.8115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gudz T. I., Tserng K. Y., Hoppel C. L. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem. 1997 Sep 26;272(39):24154–24158. doi: 10.1074/jbc.272.39.24154. [DOI] [PubMed] [Google Scholar]
  17. Haimovitz-Friedman A., Kan C. C., Ehleiter D., Persaud R. S., McLoughlin M., Fuks Z., Kolesnick R. N. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 1994 Aug 1;180(2):525–535. doi: 10.1084/jem.180.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hannun Yusuf A., Obeid Lina M. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem. 2002 May 13;277(29):25847–25850. doi: 10.1074/jbc.R200008200. [DOI] [PubMed] [Google Scholar]
  19. He H., Lam M., McCormick T. S., Distelhorst C. W. Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol. 1997 Sep 22;138(6):1219–1228. doi: 10.1083/jcb.138.6.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  21. Jayadev S., Liu B., Bielawska A. E., Lee J. Y., Nazaire F., Pushkareva MYu, Obeid L. M., Hannun Y. A. Role for ceramide in cell cycle arrest. J Biol Chem. 1995 Feb 3;270(5):2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
  22. Jenkins G. M., Richards A., Wahl T., Mao C., Obeid L., Hannun Y. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem. 1997 Dec 19;272(51):32566–32572. doi: 10.1074/jbc.272.51.32566. [DOI] [PubMed] [Google Scholar]
  23. Johnson T. M., Yu Z. X., Ferrans V. J., Lowenstein R. A., Finkel T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11848–11852. doi: 10.1073/pnas.93.21.11848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Khanna K. K., Lavin M. F. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene. 1993 Dec;8(12):3307–3312. [PubMed] [Google Scholar]
  25. Leach J. K., Van Tuyle G., Lin P. S., Schmidt-Ullrich R., Mikkelsen R. B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 2001 May 15;61(10):3894–3901. [PubMed] [Google Scholar]
  26. Levine A. J. p53, the cellular gatekeeper for growth and division. Cell. 1997 Feb 7;88(3):323–331. doi: 10.1016/s0092-8674(00)81871-1. [DOI] [PubMed] [Google Scholar]
  27. Liu B., Andrieu-Abadie N., Levade T., Zhang P., Obeid L. M., Hannun Y. A. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem. 1998 May 1;273(18):11313–11320. doi: 10.1074/jbc.273.18.11313. [DOI] [PubMed] [Google Scholar]
  28. Liu B., Hannun Y. A. Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem. 1997 Jun 27;272(26):16281–16287. doi: 10.1074/jbc.272.26.16281. [DOI] [PubMed] [Google Scholar]
  29. Lu X., Lane D. P. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell. 1993 Nov 19;75(4):765–778. doi: 10.1016/0092-8674(93)90496-d. [DOI] [PubMed] [Google Scholar]
  30. Manfredi James J. p53 and apoptosis: it's not just in the nucleus anymore. Mol Cell. 2003 Mar;11(3):552–554. doi: 10.1016/s1097-2765(03)00106-0. [DOI] [PubMed] [Google Scholar]
  31. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  32. Mimeault Murielle. New advances on structural and biological functions of ceramide in apoptotic/necrotic cell death and cancer. FEBS Lett. 2002 Oct 23;530(1-3):9–16. doi: 10.1016/s0014-5793(02)03432-4. [DOI] [PubMed] [Google Scholar]
  33. Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300–305. doi: 10.1038/38525. [DOI] [PubMed] [Google Scholar]
  34. Quillet-Mary A., Jaffrézou J. P., Mansat V., Bordier C., Naval J., Laurent G. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997 Aug 22;272(34):21388–21395. doi: 10.1074/jbc.272.34.21388. [DOI] [PubMed] [Google Scholar]
  35. Quintans J., Kilkus J., McShan C. L., Gottschalk A. R., Dawson G. Ceramide mediates the apoptotic response of WEHI 231 cells to anti-immunoglobulin, corticosteroids and irradiation. Biochem Biophys Res Commun. 1994 Jul 29;202(2):710–714. doi: 10.1006/bbrc.1994.1988. [DOI] [PubMed] [Google Scholar]
  36. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  37. Rugo R. E., Secretan M. B., Schiestl R. H. X radiation causes a persistent induction of reactive oxygen species and a delayed reinduction of TP53 in normal human diploid fibroblasts. Radiat Res. 2002 Aug;158(2):210–219. doi: 10.1667/0033-7587(2002)158[0210:xrcapi]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  38. Sawada M., Nakashima S., Banno Y., Yamakawa H., Hayashi K., Takenaka K., Nishimura Y., Sakai N., Nozawa Y. Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ. 2000 Sep;7(9):761–772. doi: 10.1038/sj.cdd.4400711. [DOI] [PubMed] [Google Scholar]
  39. Sawada M., Nakashima S., Kiyono T., Nakagawa M., Yamada J., Yamakawa H., Banno Y., Shinoda J., Nishimura Y., Nozawa Y. p53 regulates ceramide formation by neutral sphingomyelinase through reactive oxygen species in human glioma cells. Oncogene. 2001 Mar 15;20(11):1368–1378. doi: 10.1038/sj.onc.1204207. [DOI] [PubMed] [Google Scholar]
  40. Schuler M., Bossy-Wetzel E., Goldstein J. C., Fitzgerald P., Green D. R. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem. 2000 Mar 10;275(10):7337–7342. doi: 10.1074/jbc.275.10.7337. [DOI] [PubMed] [Google Scholar]
  41. Singh I., Pahan K., Khan M., Singh A. K. Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. J Biol Chem. 1998 Aug 7;273(32):20354–20362. doi: 10.1074/jbc.273.32.20354. [DOI] [PubMed] [Google Scholar]
  42. Smyth M. J., Perry D. K., Zhang J., Poirier G. G., Hannun Y. A., Obeid L. M. prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem J. 1996 May 15;316(Pt 1):25–28. doi: 10.1042/bj3160025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Soengas M. S., Alarcón R. M., Yoshida H., Giaccia A. J., Hakem R., Mak T. W., Lowe S. W. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science. 1999 Apr 2;284(5411):156–159. doi: 10.1126/science.284.5411.156. [DOI] [PubMed] [Google Scholar]
  44. Sánchez A., Alvarez A. M., Benito M., Fabregat I. Cycloheximide prevents apoptosis, reactive oxygen species production, and glutathione depletion induced by transforming growth factor beta in fetal rat hepatocytes in primary culture. Hepatology. 1997 Oct;26(4):935–943. doi: 10.1002/hep.510260420. [DOI] [PubMed] [Google Scholar]
  45. Taylor Matthew Hiram, Buckwalter Matthew Ross, Stephenson Amen Craig, Hart Janet Leigh, Taylor Benjamin James, O'Neill Kim Leslie. Radiation-induced apoptosis in MOLT-4 cells requires de novo protein synthesis independent of de novo RNA synthesis. FEBS Lett. 2002 Mar 13;514(2-3):199–203. doi: 10.1016/s0014-5793(02)02364-5. [DOI] [PubMed] [Google Scholar]
  46. Tepper A. D., de Vries E., van Blitterswijk W. J., Borst J. Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95- and DNA damage-induced apoptosis. J Clin Invest. 1999 Apr;103(7):971–978. doi: 10.1172/JCI5457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Troyano A., Fernández C., Sancho P., de Blas E., Aller P. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation. J Biol Chem. 2001 Oct 15;276(50):47107–47115. doi: 10.1074/jbc.M104516200. [DOI] [PubMed] [Google Scholar]
  48. Tsujimoto Y., Shimizu S., Eguchi Y., Kamiike W., Matsuda H. Bcl-2 and Bcl-xL block apoptosis as well as necrosis: possible involvement of common mediators in apoptotic and necrotic signal transduction pathways. Leukemia. 1997 Apr;11 (Suppl 3):380–382. [PubMed] [Google Scholar]
  49. Zamzami N., Marchetti P., Castedo M., Decaudin D., Macho A., Hirsch T., Susin S. A., Petit P. X., Mignotte B., Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367–377. doi: 10.1084/jem.182.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zeng X., Keller D., Wu L., Lu H. UV but not gamma irradiation accelerates p53-induced apoptosis of teratocarcinoma cells by repressing MDM2 transcription. Cancer Res. 2000 Nov 1;60(21):6184–6188. [PubMed] [Google Scholar]
  51. Zhang J., Alter N., Reed J. C., Borner C., Obeid L. M., Hannun Y. A. Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5325–5328. doi: 10.1073/pnas.93.11.5325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES