Abstract
Thrombin activation of human platelets is mediated by the high-affinity PAR1 (protease-activated receptor-1) and the low-affinity PAR4 receptor. PAR1 and PAR4 exhibit markedly disparate kinetics of activation that likely reflect differences in the macromolecular association of thrombin with their respective N-terminal extracellular domains (exodomains). Here we examine the mechanism of initial thrombin binding and cleavage of the high- and low-affinity PAR exodomains using steady-state kinetic analyses. We showed that the PAR4 exodomain lacks the functional hirudin-like sequence found in PAR1 and does not bind exosite I to cause allosteric activation or inhibition of thrombin. Instead, PAR4 contains an anionic cluster, Asp(57)...Asp(59) ...Glu(62)...Asp(65) (DDED), in its exodomain, which slows the dissociation of PAR4 from the cationic thrombin. The analogous anionic residues in the PAR1 exodomain do not influence affinity for thrombin. Although PAR4 is cleaved more slowly than PAR1 on the cell surface, peptides containing the PAR4 P(4)-P(1) active-site-interacting sequence, Pro(45)-Ala-Pro-Arg (PAPR), are efficiently cleaved due to the optimal placement of dual prolines at positions P(4) and P(2). In comparison, thrombin has low affinity and slow cleavage rates for peptides that have a P(3) proline as occurs in human PAR3. Thus, to compensate for the lack of exosite I binding, PAR4 utilizes proline residues in its P(4)-P(1) sequence to provide high-affinity interactions with the active site and an anionic cluster to slow dissociation from the cationic thrombin.
Full Text
The Full Text of this article is available as a PDF (255.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahn H. S., Foster C., Boykow G., Arik L., Smith-Torhan A., Hesk D., Chatterjee M. Binding of a thrombin receptor tethered ligand analogue to human platelet thrombin receptor. Mol Pharmacol. 1997 Feb;51(2):350–356. doi: 10.1124/mol.51.2.350. [DOI] [PubMed] [Google Scholar]
- Ayala Y. M., Cantwell A. M., Rose T., Bush L. A., Arosio D., Di Cera E. Molecular mapping of thrombin-receptor interactions. Proteins. 2001 Nov 1;45(2):107–116. doi: 10.1002/prot.1130. [DOI] [PubMed] [Google Scholar]
- Backes B. J., Harris J. L., Leonetti F., Craik C. S., Ellman J. A. Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nat Biotechnol. 2000 Feb;18(2):187–193. doi: 10.1038/72642. [DOI] [PubMed] [Google Scholar]
- Baugh R. J., Dickinson C. D., Ruf W., Krishnaswamy S. Exosite interactions determine the affinity of factor X for the extrinsic Xase complex. J Biol Chem. 2000 Sep 15;275(37):28826–28833. doi: 10.1074/jbc.M005266200. [DOI] [PubMed] [Google Scholar]
- Boskovic D. S., Krishnaswamy S. Exosite binding tethers the macromolecular substrate to the prothrombinase complex and directs cleavage at two spatially distinct sites. J Biol Chem. 2000 Dec 8;275(49):38561–38570. doi: 10.1074/jbc.M006637200. [DOI] [PubMed] [Google Scholar]
- Brass L. F., Vassallo R. R., Jr, Belmonte E., Ahuja M., Cichowski K., Hoxie J. A. Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J Biol Chem. 1992 Jul 15;267(20):13795–13798. [PubMed] [Google Scholar]
- Cleary David B., Trumbo Toni A., Maurer Muriel C. Protease-activated receptor 4-like peptides bind to thrombin through an optimized interaction with the enzyme active site surface. Arch Biochem Biophys. 2002 Jul 15;403(2):179–188. doi: 10.1016/s0003-9861(02)00220-5. [DOI] [PubMed] [Google Scholar]
- Covic L., Gresser A. L., Kuliopulos A. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry. 2000 May 9;39(18):5458–5467. doi: 10.1021/bi9927078. [DOI] [PubMed] [Google Scholar]
- Covic Lidija, Gresser Amy L., Talavera Joyce, Swift Steven, Kuliopulos Athan. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):643–648. doi: 10.1073/pnas.022460899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dharmawardana K. R., Olson S. T., Bock P. E. Role of regulatory exosite I in binding of thrombin to human factor V, factor Va, factor Va subunits, and activation fragments. J Biol Chem. 1999 Jun 25;274(26):18635–18643. doi: 10.1074/jbc.274.26.18635. [DOI] [PubMed] [Google Scholar]
- Duffy E. J., Angliker H., Le Bonniec B. F., Stone S. R. Allosteric modulation of the activity of thrombin. Biochem J. 1997 Jan 15;321(Pt 2):361–365. doi: 10.1042/bj3210361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall S. W., Gibbs C. S., Leung L. L. Identification of critical residues on thrombin mediating its interaction with fibrin. Thromb Haemost. 2001 Dec;86(6):1466–1474. [PubMed] [Google Scholar]
- Hall S. W., Nagashima M., Zhao L., Morser J., Leung L. L. Thrombin interacts with thrombomodulin, protein C, and thrombin-activatable fibrinolysis inhibitor via specific and distinct domains. J Biol Chem. 1999 Sep 3;274(36):25510–25516. doi: 10.1074/jbc.274.36.25510. [DOI] [PubMed] [Google Scholar]
- Harris J. L., Backes B. J., Leonetti F., Mahrus S., Ellman J. A., Craik C. S. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7754–7759. doi: 10.1073/pnas.140132697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogg P. J., Jackson C. M. Formation of a ternary complex between thrombin, fibrin monomer, and heparin influences the action of thrombin on its substrates. J Biol Chem. 1990 Jan 5;265(1):248–255. [PubMed] [Google Scholar]
- Hopfner K. P., Di Cera E. Energetics of thrombin-fibrinogen interaction. Biochemistry. 1992 Nov 24;31(46):11567–11571. doi: 10.1021/bi00161a040. [DOI] [PubMed] [Google Scholar]
- Ishii K., Gerszten R., Zheng Y. W., Welsh J. B., Turck C. W., Coughlin S. R. Determinants of thrombin receptor cleavage. Receptor domains involved, specificity, and role of the P3 aspartate. J Biol Chem. 1995 Jul 7;270(27):16435–16440. doi: 10.1074/jbc.270.27.16435. [DOI] [PubMed] [Google Scholar]
- Jacques S. L., LeMasurier M., Sheridan P. J., Seeley S. K., Kuliopulos A. Substrate-assisted catalysis of the PAR1 thrombin receptor. Enhancement of macromolecular association and cleavage. J Biol Chem. 2000 Dec 29;275(52):40671–40678. doi: 10.1074/jbc.M004544200. [DOI] [PubMed] [Google Scholar]
- Kahn M. L., Zheng Y. W., Huang W., Bigornia V., Zeng D., Moff S., Farese R. V., Jr, Tam C., Coughlin S. R. A dual thrombin receptor system for platelet activation. Nature. 1998 Aug 13;394(6694):690–694. doi: 10.1038/29325. [DOI] [PubMed] [Google Scholar]
- Kuliopulos A., Covic L., Seeley S. K., Sheridan P. J., Helin J., Costello C. E. Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry. 1999 Apr 6;38(14):4572–4585. doi: 10.1021/bi9824792. [DOI] [PubMed] [Google Scholar]
- Kuliopulos A., Talalay P., Mildvan A. S. Combined effects of two mutations of catalytic residues on the ketosteroid isomerase reaction. Biochemistry. 1990 Nov 6;29(44):10271–10280. doi: 10.1021/bi00496a017. [DOI] [PubMed] [Google Scholar]
- Liu L. W., Vu T. K., Esmon C. T., Coughlin S. R. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J Biol Chem. 1991 Sep 15;266(26):16977–16980. [PubMed] [Google Scholar]
- Lottenberg R., Hall J. A., Blinder M., Binder E. P., Jackson C. M. The action of thrombin on peptide p-nitroanilide substrates. Substrate selectivity and examination of hydrolysis under different reaction conditions. Biochim Biophys Acta. 1983 Feb 15;742(3):539–557. doi: 10.1016/0167-4838(83)90272-8. [DOI] [PubMed] [Google Scholar]
- Mathews I. I., Padmanabhan K. P., Ganesh V., Tulinsky A., Ishii M., Chen J., Turck C. W., Coughlin S. R., Fenton J. W., 2nd Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry. 1994 Mar 22;33(11):3266–3279. doi: 10.1021/bi00177a018. [DOI] [PubMed] [Google Scholar]
- Nakanishi-Matsui M., Zheng Y. W., Sulciner D. J., Weiss E. J., Ludeman M. J., Coughlin S. R. PAR3 is a cofactor for PAR4 activation by thrombin. Nature. 2000 Apr 6;404(6778):609–613. doi: 10.1038/35007085. [DOI] [PubMed] [Google Scholar]
- Rand M. D., Lock J. B., van't Veer C., Gaffney D. P., Mann K. G. Blood clotting in minimally altered whole blood. Blood. 1996 Nov 1;88(9):3432–3445. [PubMed] [Google Scholar]
- Rydel T. J., Ravichandran K. G., Tulinsky A., Bode W., Huber R., Roitsch C., Fenton J. W., 2nd The structure of a complex of recombinant hirudin and human alpha-thrombin. Science. 1990 Jul 20;249(4966):277–280. doi: 10.1126/science.2374926. [DOI] [PubMed] [Google Scholar]
- Shapiro M. J., Weiss E. J., Faruqi T. R., Coughlin S. R. Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J Biol Chem. 2000 Aug 18;275(33):25216–25221. doi: 10.1074/jbc.M004589200. [DOI] [PubMed] [Google Scholar]
- Shi F., Hogg P. J., Winzor D. J., Jackson C. M. Evidence for multiple enzyme site involvement in the modulation of thrombin activity by products of prothrombin proteolysis. Biophys Chem. 1998 Dec 14;75(3):187–199. doi: 10.1016/s0301-4622(98)00205-1. [DOI] [PubMed] [Google Scholar]
- Vindigni A., Dang Q. D., Di Cera E. Site-specific dissection of substrate recognition by thrombin. Nat Biotechnol. 1997 Sep;15(9):891–895. doi: 10.1038/nbt0997-891. [DOI] [PubMed] [Google Scholar]
- Vu T. K., Wheaton V. I., Hung D. T., Charo I., Coughlin S. R. Domains specifying thrombin-receptor interaction. Nature. 1991 Oct 17;353(6345):674–677. doi: 10.1038/353674a0. [DOI] [PubMed] [Google Scholar]
- Xu W. F., Andersen H., Whitmore T. E., Presnell S. R., Yee D. P., Ching A., Gilbert T., Davie E. W., Foster D. C. Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6642–6646. doi: 10.1073/pnas.95.12.6642. [DOI] [PMC free article] [PubMed] [Google Scholar]