Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Dec 15;376(Pt 3):717–724. doi: 10.1042/BJ20031069

The tomato lectin consists of two homologous chitin-binding modules separated by an extensin-like linker.

Willy J Peumans 1, Pierre Rougé 1, Els J M Van Damme 1
PMCID: PMC1223818  PMID: 14503921

Abstract

A cDNA encoding a putative lectin expressed in tomato leaves was identified and analysed. The lectin consists of two homologous chitin-binding modules interconnected by a short proline-rich domain containing a single Ser[Pro]( n ) repetitive motif. Each module comprises two in-tandem-arrayed hevein domains separated by a tetrapeptide linker. Besides the chitin-binding modules and proline-rich domain, the lectin contains two short unrelated domains located at the N- and C-termini of the protein respectively. Eventual elucidation of the molecular structure of the tomato lectin confirms the presumed chimaeric nature of the Solanaceae lectins but also indicates that all previously proposed models need to be revised.

Full Text

The Full Text of this article is available as a PDF (240.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A. K., Bolwell G. P., Brown D. S., Sidebottom C., Slabas A. R. Potato lectin: a three-domain glycoprotein with novel hydroxyproline-containing sequences and sequence similarities to wheat-germ agglutinin. Int J Biochem Cell Biol. 1996 Nov;28(11):1285–1291. doi: 10.1016/s1357-2725(96)00043-x. [DOI] [PubMed] [Google Scholar]
  2. Allen A. K., Desai N. N., Neuberger A., Creeth J. M. Properties of potato lectin and the nature of its glycoprotein linkages. Biochem J. 1978 Jun 1;171(3):665–674. doi: 10.1042/bj1710665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen A. K. Potato lectin - a glycoprotein with two domains. Prog Clin Biol Res. 1983;138:71–85. [PubMed] [Google Scholar]
  4. Andersen N. H., Cao B., Rodríguez-Romero A., Arreguin B. Hevein: NMR assignment and assessment of solution-state folding for the agglutinin-toxin motif. Biochemistry. 1993 Feb 16;32(6):1407–1422. doi: 10.1021/bi00057a004. [DOI] [PubMed] [Google Scholar]
  5. Ashford D., Desai N. N., Allen A. K., Neuberger A., O'Neill M. A., Selvendran R. R. Structural studies of the carbohydrate moieties of lectins from potato (Solanum tuberosum) tubers and thorn-apple (Datura stramonium) seeds. Biochem J. 1982 Jan 1;201(1):199–208. doi: 10.1042/bj2010199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Esnouf R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model. 1997 Apr;15(2):132-4, 112-3. doi: 10.1016/S1093-3263(97)00021-1. [DOI] [PubMed] [Google Scholar]
  7. Gaboriaud C., Bissery V., Benchetrit T., Mornon J. P. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 1987 Nov 16;224(1):149–155. doi: 10.1016/0014-5793(87)80439-8. [DOI] [PubMed] [Google Scholar]
  8. Harata K., Muraki M. Crystal structures of Urtica dioica agglutinin and its complex with tri-N-acetylchitotriose. J Mol Biol. 2000 Mar 31;297(3):673–681. doi: 10.1006/jmbi.2000.3594. [DOI] [PubMed] [Google Scholar]
  9. Kieliszewski M. J., Lamport D. T. Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J. 1994 Feb;5(2):157–172. doi: 10.1046/j.1365-313x.1994.05020157.x. [DOI] [PubMed] [Google Scholar]
  10. Kieliszewski M. J., Showalter A. M., Leykam J. F. Potato lectin: a modular protein sharing sequence similarities with the extensin family, the hevein lectin family, and snake venom disintegrins (platelet aggregation inhibitors). Plant J. 1994 Jun;5(6):849–861. doi: 10.1046/j.1365-313x.1994.5060849.x. [DOI] [PubMed] [Google Scholar]
  11. Kilpatrick D. C. Tomato (Lycopersicon esculentum) lectin and serologically related molecules. Prog Clin Biol Res. 1983;138:63–70. [PubMed] [Google Scholar]
  12. Kilpatrick D. C., Weston J., Urbaniak S. J. Purification and separation of tomato isolectins by chromatofocusing. Anal Biochem. 1983 Oct 1;134(1):205–209. doi: 10.1016/0003-2697(83)90285-3. [DOI] [PubMed] [Google Scholar]
  13. Mas M. T., Smith K. C., Yarmush D. L., Aisaka K., Fine R. M. Modeling the anti-CEA antibody combining site by homology and conformational search. Proteins. 1992 Dec;14(4):483–498. doi: 10.1002/prot.340140409. [DOI] [PubMed] [Google Scholar]
  14. Nachbar M. S., Oppenheim J. D., Thomas J. O. Lectins in the U.S. Diet. Isolation and characterization of a lectin from the tomato (Lycopersicon esculentum). J Biol Chem. 1980 Mar 10;255(5):2056–2061. [PubMed] [Google Scholar]
  15. Naito Y., Minamihara T., Ando A., Marutani T., Oguri S., Nagata Y. Domain construction of cherry-tomato lectin: relation to newly found 42-kDa protein. Biosci Biotechnol Biochem. 2001 Jan;65(1):86–93. doi: 10.1271/bbb.65.86. [DOI] [PubMed] [Google Scholar]
  16. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  17. Saul F. A., Rovira P., Boulot G., Damme E. J., Peumans W. J., Truffa-Bachi P., Bentley G. A. Crystal structure of Urtica dioica agglutinin, a superantigen presented by MHC molecules of class I and class II. Structure. 2000 Jun 15;8(6):593–603. doi: 10.1016/s0969-2126(00)00142-8. [DOI] [PubMed] [Google Scholar]
  18. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES