Abstract
In the present study, we have investigated the role of RyR1 (ryanodine receptor calcium channel type 1) in glutathione (GSH) transport through the sarcoplasmic reticulum (SR) membrane of skeletal muscles. Lanthanum chloride, a prototypic blocker of cation channels, inhibited the influx and efflux of GSH in SR vesicles. Using a rapid-filtration-based assay and lanthanum chloride as a transport blocker, an uptake of radiolabelled GSH into SR vesicles was observed. Pretreatment of SR vesicles with the RyR1 antagonists Ruthenium Red and ryanodine as well as with lanthanum chloride blocked the GSH uptake. An SR-like GSH uptake appeared in microsomes obtained from an HEK-293 (human embryonic kidney 293) cell line after transfection of RyR1. These observations strongly suggest that RyR1 mediates GSH transport through the SR membranes of skeletal muscles.
Full Text
The Full Text of this article is available as a PDF (120.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bulter J., Spielberg S. P., Schulman J. D. Reduction of disulfide-containing amines amino acids, and small peptides. Anal Biochem. 1976 Oct;75(2):674–675. doi: 10.1016/0003-2697(76)90129-9. [DOI] [PubMed] [Google Scholar]
- Bánhegyi G., Lusini L., Puskás F., Rossi R., Fulceri R., Braun L., Mile V., di Simplicio P., Mandl J., Benedetti A. Preferential transport of glutathione versus glutathione disulfide in rat liver microsomal vesicles. J Biol Chem. 1999 Apr 30;274(18):12213–12216. doi: 10.1074/jbc.274.18.12213. [DOI] [PubMed] [Google Scholar]
- Bánhegyi G., Marcolongo P., Fulceri R., Hinds C., Burchell A., Benedetti A. Demonstration of a metabolically active glucose-6-phosphate pool in the lumen of liver microsomal vesicles. J Biol Chem. 1997 May 23;272(21):13584–13590. doi: 10.1074/jbc.272.21.13584. [DOI] [PubMed] [Google Scholar]
- Bánhegyi G., Marcolongo P., Puskás F., Fulceri R., Mandl J., Benedetti A. Dehydroascorbate and ascorbate transport in rat liver microsomal vesicles. J Biol Chem. 1998 Jan 30;273(5):2758–2762. doi: 10.1074/jbc.273.5.2758. [DOI] [PubMed] [Google Scholar]
- Csala M., Fulceri R., Mandl J., Benedetti A., Bánhegyi G. Ryanodine receptor channel-dependent glutathione transport in the sarcoplasmic reticulum of skeletal muscle. Biochem Biophys Res Commun. 2001 Sep 28;287(3):696–700. doi: 10.1006/bbrc.2001.5648. [DOI] [PubMed] [Google Scholar]
- Feng W., Liu G., Allen P. D., Pessah I. N. Transmembrane redox sensor of ryanodine receptor complex. J Biol Chem. 2000 Nov 17;275(46):35902–35907. doi: 10.1074/jbc.C000523200. [DOI] [PubMed] [Google Scholar]
- Fulceri R., Bánhegyi G., Gamberucci A., Giunti R., Mandl J., Benedetti A. Evidence for the intraluminal positioning of p-nitrophenol UDP-glucuronosyltransferase activity in rat liver microsomal vesicles. Arch Biochem Biophys. 1994 Feb 15;309(1):43–46. doi: 10.1006/abbi.1994.1081. [DOI] [PubMed] [Google Scholar]
- Fulceri R., Giunti R., Knudsen J., Leuzzi R., Kardon T., Benedetti A. Rapamycin inhibits activation of ryanodine receptors from skeletal muscle by the fatty acyl CoA-acyl CoA binding protein complex. Biochem Biophys Res Commun. 1999 Oct 22;264(2):409–412. doi: 10.1006/bbrc.1999.1532. [DOI] [PubMed] [Google Scholar]
- Hwang C., Sinskey A. J., Lodish H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992 Sep 11;257(5076):1496–1502. doi: 10.1126/science.1523409. [DOI] [PubMed] [Google Scholar]
- Kasai M., Ide T. Regulation of calcium release channel in sarcoplasmic reticulum. Ion Channels. 1996;4:303–331. doi: 10.1007/978-1-4899-1775-1_8. [DOI] [PubMed] [Google Scholar]
- Kasai M., Kawasaki T., Yamamoto K. Permeation of neutral molecules through calcium channel in sarcoplasmic reticulum vesicles. J Biochem. 1992 Aug;112(2):197–203. doi: 10.1093/oxfordjournals.jbchem.a123877. [DOI] [PubMed] [Google Scholar]
- Linsdell P., Hanrahan J. W. Glutathione permeability of CFTR. Am J Physiol. 1998 Jul;275(1 Pt 1):C323–C326. doi: 10.1152/ajpcell.1998.275.1.C323. [DOI] [PubMed] [Google Scholar]
- Liu G., Pessah I. N. Molecular interaction between ryanodine receptor and glycoprotein triadin involves redox cycling of functionally important hyperreactive sulfhydryls. J Biol Chem. 1994 Dec 30;269(52):33028–33034. [PubMed] [Google Scholar]
- Mead Fiona, Williams Alan J. Block of the ryanodine receptor channel by neomycin is relieved at high holding potentials. Biophys J. 2002 Apr;82(4):1953–1963. doi: 10.1016/S0006-3495(02)75544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner G. Ionic permeability of isolated muscle sarcoplasmic reticulum and liver endoplasmic reticulum vesicles. Methods Enzymol. 1988;157:417–437. doi: 10.1016/0076-6879(88)57094-5. [DOI] [PubMed] [Google Scholar]
- Meissner G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem. 1986 May 15;261(14):6300–6306. [PubMed] [Google Scholar]
- Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
- Meissner Gerhard. Regulation of mammalian ryanodine receptors. Front Biosci. 2002 Nov 1;7:d2072–d2080. doi: 10.2741/A899. [DOI] [PubMed] [Google Scholar]
- Rossi Daniela, Simeoni Ilenia, Micheli Marcella, Bootman Martin, Lipp Peter, Allen Paul D., Sorrentino Vincenzo. RyR1 and RyR3 isoforms provide distinct intracellular Ca2+ signals in HEK 293 cells. J Cell Sci. 2002 Jun 15;115(Pt 12):2497–2504. doi: 10.1242/jcs.115.12.2497. [DOI] [PubMed] [Google Scholar]
- Rusnak F., Reiter T. Sensing electrons: protein phosphatase redox regulation. Trends Biochem Sci. 2000 Nov;25(11):527–529. doi: 10.1016/s0968-0004(00)01659-5. [DOI] [PubMed] [Google Scholar]
- Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol. 1984 Sep;99(3):875–885. doi: 10.1083/jcb.99.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorrentino V., Barone V., Rossi D. Intracellular Ca(2+) release channels in evolution. Curr Opin Genet Dev. 2000 Dec;10(6):662–667. doi: 10.1016/s0959-437x(00)00139-8. [DOI] [PubMed] [Google Scholar]
- Sun J., Xu L., Eu J. P., Stamler J. S., Meissner G. Classes of thiols that influence the activity of the skeletal muscle calcium release channel. J Biol Chem. 2001 Feb 16;276(19):15625–15630. doi: 10.1074/jbc.M100083200. [DOI] [PubMed] [Google Scholar]
- Williams Alan J. Ion conduction and selectivity in the ryanodine receptor channel. Front Biosci. 2002 May 1;7:d1223–d1230. doi: 10.2741/A835. [DOI] [PubMed] [Google Scholar]
- Xia R., Stangler T., Abramson J. J. Skeletal muscle ryanodine receptor is a redox sensor with a well defined redox potential that is sensitive to channel modulators. J Biol Chem. 2000 Nov 24;275(47):36556–36561. doi: 10.1074/jbc.M007613200. [DOI] [PubMed] [Google Scholar]
- Xu L., Tripathy A., Pasek D. A., Meissner G. Potential for pharmacology of ryanodine receptor/calcium release channels. Ann N Y Acad Sci. 1998 Sep 16;853:130–148. doi: 10.1111/j.1749-6632.1998.tb08262.x. [DOI] [PubMed] [Google Scholar]
- Xu L., Tripathy A., Pasek D. A., Meissner G. Ruthenium red modifies the cardiac and skeletal muscle Ca(2+) release channels (ryanodine receptors) by multiple mechanisms. J Biol Chem. 1999 Nov 12;274(46):32680–32691. doi: 10.1074/jbc.274.46.32680. [DOI] [PubMed] [Google Scholar]
- Zable A. C., Favero T. G., Abramson J. J. Glutathione modulates ryanodine receptor from skeletal muscle sarcoplasmic reticulum. Evidence for redox regulation of the Ca2+ release mechanism. J Biol Chem. 1997 Mar 14;272(11):7069–7077. doi: 10.1074/jbc.272.11.7069. [DOI] [PubMed] [Google Scholar]