Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 1;377(Pt 1):141–148. doi: 10.1042/BJ20031205

Coagulation factor Va Glu-96-Asp-111: a chelator-sensitive site involved in function and subunit association.

Abed R Zeibdawi 1, Jean E Grundy 1, Bogna Lasia 1, Edward L G Pryzdial 1
PMCID: PMC1223830  PMID: 12948396

Abstract

Coagulation FVa (factor Va) accelerates the essential generation of thrombin by FXa (factor Xa). Although the noncovalent Ca2+-dependent association between the FVa light and heavy subunits (FVaL and FVaH) is required for function, little is known about the specific residues involved. Previous fragmentation studies and homology modelling led us to investigate the contribution of Leu-94-Asp-112. Including prospective divalent cation-binding acidic amino acids, nine conserved residues were individually replaced with Ala in the recombinant B-domainless FVa precursor (DeltaFV). While mutation of Thr-104, Glu-108, Asp-112 or Tyr-100 resulted in only minor changes to FXa-mediated thrombin generation, the functions of E96A (81%), D111A (70%) and D102A (60%) mutants (where the single-letter amino acid code is used) were notably reduced. The mutants targeting neighbouring acidic residues, Asp-79 and Glu-119, had activity comparable with DeltaFV, supporting the specific involvement of select residues. Providing a basis for reduced activity, thrombin treatment of D111A resulted in spontaneous dissociation of subunits. Since FVaH and FVaL derived from E96A or D102A remained associated in the presence of Ca2+, like the wild type, but conversely dissociated rapidly upon chelation, a subtle difference in divalent cation co-ordination is implied. Subunit interactions for all other single-point mutants resembled the wild type. These data, along with corroborating multipoint mutants, reveal Asp-111 as essential for FVa subunit association. Although Glu-96 and Asp-102 can be mutated without gross changes to divalent cation-dependent FVaH-FVaL interactions, they too are required for optimal function. Thus Glu-96-Asp-111 imparts at least two discernible effects on FVa coagulation activity.

Full Text

The Full Text of this article is available as a PDF (171.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Annamalai A. E., Rao A. K., Chiu H. C., Wang D., Duttá-Roy A. K., Walsh P. N., Colman R. W. Epitope mapping of functional domains of human factor Va with human and murine monoclonal antibodies. Evidence for the interaction of heavy chain with factor Xa and calcium. Blood. 1987 Jul;70(1):139–146. [PubMed] [Google Scholar]
  2. Bihoreau N., Pin S., de Kersabiec A. M., Vidot F., Fontaine-Aupart M. P. Copper-atom identification in the active and inactive forms of plasma-derived FVIII and recombinant FVIII-delta II. Eur J Biochem. 1994 May 15;222(1):41–48. doi: 10.1111/j.1432-1033.1994.tb18839.x. [DOI] [PubMed] [Google Scholar]
  3. Church W. R., Jernigan R. L., Toole J., Hewick R. M., Knopf J., Knutson G. J., Nesheim M. E., Mann K. G., Fass D. N. Coagulation factors V and VIII and ceruloplasmin constitute a family of structurally related proteins. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6934–6937. doi: 10.1073/pnas.81.22.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Esmon C. T. The subunit structure of thrombin-activated factor V. Isolation of activated factor V, separation of subunits, and reconstitution of biological activity. J Biol Chem. 1979 Feb 10;254(3):964–973. [PubMed] [Google Scholar]
  5. Grundy J. E., Lavigne N., Hirama T., MacKenzie C. R., Pryzdial E. L. Binding of plasminogen and tissue plasminogen activator to plasmin-modulated factor X and factor Xa. Biochemistry. 2001 May 29;40(21):6293–6302. doi: 10.1021/bi002209v. [DOI] [PubMed] [Google Scholar]
  6. Guinto E. R., Esmon C. T. Formation of a calcium-binding site on bovine activated factor V following recombination of the isolated subunits. J Biol Chem. 1982 Sep 10;257(17):10038–10043. [PubMed] [Google Scholar]
  7. Hibbard L. S., Mann K. G. The calcium-binding properties of bovine factor V. J Biol Chem. 1980 Jan 25;255(2):638–645. [PubMed] [Google Scholar]
  8. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  9. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15;77(1):61–68. doi: 10.1016/0378-1119(89)90359-4. [DOI] [PubMed] [Google Scholar]
  10. Jenny R. J., Pittman D. D., Toole J. J., Kriz R. W., Aldape R. A., Hewick R. M., Kaufman R. J., Mann K. G. Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4846–4850. doi: 10.1073/pnas.84.14.4846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kalafatis M., Egan J. O., van 't Veer C., Cawthern K. M., Mann K. G. The regulation of clotting factors. Crit Rev Eukaryot Gene Expr. 1997;7(3):241–280. doi: 10.1615/critreveukargeneexpr.v7.i3.40. [DOI] [PubMed] [Google Scholar]
  12. Kalafatis M., Jenny R. J., Mann K. G. Identification and characterization of a phospholipid-binding site of bovine factor Va. J Biol Chem. 1990 Dec 15;265(35):21580–21589. [PubMed] [Google Scholar]
  13. Kalafatis M., Xue J., Lawler C. M., Mann K. G. Contribution of the heavy and light chains of factor Va to the interaction with factor Xa. Biochemistry. 1994 May 31;33(21):6538–6545. doi: 10.1021/bi00187a022. [DOI] [PubMed] [Google Scholar]
  14. Kane W. H., Devore-Carter D., Ortel T. L. Expression and characterization of recombinant human factor V and a mutant lacking a major portion of the connecting region. Biochemistry. 1990 Jul 24;29(29):6762–6768. doi: 10.1021/bi00481a003. [DOI] [PubMed] [Google Scholar]
  15. Krishnaswamy S., Mann K. G. The binding of factor Va to phospholipid vesicles. J Biol Chem. 1988 Apr 25;263(12):5714–5723. [PubMed] [Google Scholar]
  16. Krishnaswamy S., Nesheim M. E., Pryzdial E. L., Mann K. G. Assembly of prothrombinase complex. Methods Enzymol. 1993;222:260–280. doi: 10.1016/0076-6879(93)22018-b. [DOI] [PubMed] [Google Scholar]
  17. Krishnaswamy S., Russell G. D., Mann K. G. The reassociation of factor Va from its isolated subunits. J Biol Chem. 1989 Feb 25;264(6):3160–3168. [PubMed] [Google Scholar]
  18. Laue T. M., Lu R., Krieg U. C., Esmon C. T., Johnson A. E. Ca2+-dependent structural changes in bovine blood coagulation factor Va and its subunits. Biochemistry. 1989 May 30;28(11):4762–4771. doi: 10.1021/bi00437a037. [DOI] [PubMed] [Google Scholar]
  19. Mann K. G., Lawler C. M., Vehar G. A., Church W. R. Coagulation Factor V contains copper ion. J Biol Chem. 1984 Nov 10;259(21):12949–12951. [PubMed] [Google Scholar]
  20. Ortel T. L., Devore-Carter D., Quinn-Allen M., Kane W. H. Deletion analysis of recombinant human factor V. Evidence for a phosphatidylserine binding site in the second C-type domain. J Biol Chem. 1992 Feb 25;267(6):4189–4198. [PubMed] [Google Scholar]
  21. Ortel T. L., Quinn-Allen M. A., Keller F. G., Peterson J. A., Larocca D., Kane W. H. Localization of functionally important epitopes within the second C-type domain of coagulation factor V using recombinant chimeras. J Biol Chem. 1994 Jun 3;269(22):15898–15905. [PubMed] [Google Scholar]
  22. Pellequer J. L., Gale A. J., Getzoff E. D., Griffin J. H. Three-dimensional model of coagulation factor Va bound to activated protein C. Thromb Haemost. 2000 Nov;84(5):849–857. [PubMed] [Google Scholar]
  23. Pittman D. D., Marquette K. A., Kaufman R. J. Role of the B domain for factor VIII and factor V expression and function. Blood. 1994 Dec 15;84(12):4214–4225. [PubMed] [Google Scholar]
  24. Pryzdial E. L., Mann K. G. The association of coagulation factor Xa and factor Va. J Biol Chem. 1991 May 15;266(14):8969–8977. [PubMed] [Google Scholar]
  25. Villoutreix B. O., Dahlbäck B. Structural investigation of the A domains of human blood coagulation factor V by molecular modeling. Protein Sci. 1998 Jun;7(6):1317–1325. doi: 10.1002/pro.5560070607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vinazzer H., Woler M. A new low molecular weight heparin fragment (PK 10169): in vitro and in vivo studies. Haemostasis. 1986;16(2):106–115. doi: 10.1159/000215280. [DOI] [PubMed] [Google Scholar]
  27. Wakabayashi H., Koszelak M. E., Mastri M., Fay P. J. Metal ion-independent association of factor VIII subunits and the roles of calcium and copper ions for cofactor activity and inter-subunit affinity. Biochemistry. 2001 Aug 28;40(34):10293–10300. doi: 10.1021/bi010353q. [DOI] [PubMed] [Google Scholar]
  28. Wakabayashi Hironao, Schmidt Kyla M., Fay Philip J. Ca(2+) binding to both the heavy and light chains of factor VIII is required for cofactor activity. Biochemistry. 2002 Jul 2;41(26):8485–8492. doi: 10.1021/bi025589o. [DOI] [PubMed] [Google Scholar]
  29. Zeibdawi A. R., Pryzdial E. L. Mechanism of factor Va inactivation by plasmin. Loss of A2 and A3 domains from a Ca2+-dependent complex of fragments bound to phospholipid. J Biol Chem. 2001 Mar 16;276(23):19929–19936. doi: 10.1074/jbc.M004711200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES