Abstract
Cell barriers are essential for the maintenance and regulation of the microenvironments of the human body. Cell-penetrating peptides have simplified the delivery of bioactive cargoes across the plasma membrane. Here, the passage of three cell-penetrating peptides (transportan, the transportan analogue transportan 10, and penetratin) across a Caco-2 human colon cancer cell layer in vitro was investigated. The peptides were internalized into epithelial Caco-2 cells as visualized by indirect fluorescence microscopy and quantified by fluorimetry. Studies of peptide outflow from cells showed that the peptides were in equilibrium across the plasma membrane. The ability of the peptides to cross a Caco-2 cell layer was tested in a two-chambered model system. After 120 min, 7.0%, 2.8% and 0.6% of added transportan, transportan 10 and penetratin respectively was detected in the lower chamber. Both transportan and transportan 10 reversibly decreased the trans-epithelial electrical resistance of the barrier model, with minimum values after 60 min of 46% and 60% of control respectively. Penetratin did not affect the resistance of the cell layer to the same extent. Although transportan markedly increased the passage of ions, the paracellular flux of 4.4 kDa fluorescein-labelled dextran was limited. In conclusion, the results indicate that the transportan peptides pass the epithelial cell layer mainly by a mechanism involving a transcellular pathway.
Full Text
The Full Text of this article is available as a PDF (205.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. M. Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci. 2001 Jun;16:126–130. doi: 10.1152/physiologyonline.2001.16.3.126. [DOI] [PubMed] [Google Scholar]
- Artursson P., Palm K., Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):27–43. doi: 10.1016/s0169-409x(00)00128-9. [DOI] [PubMed] [Google Scholar]
- Burton P. S., Conradi R. A., Ho N. F., Hilgers A. R., Borchardt R. T. How structural features influence the biomembrane permeability of peptides. J Pharm Sci. 1996 Dec;85(12):1336–1340. doi: 10.1021/js960067d. [DOI] [PubMed] [Google Scholar]
- Christiaens Bart, Symoens Sofie, Verheyden Stefan, Engelborghs Yves, Joliot Alain, Prochiantz Alain, Vandekerckhove Joël, Rosseneu Maryvonne, Vanloo Berlinda, Vanderheyden Stefan. Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur J Biochem. 2002 Jun;269(12):2918–2926. doi: 10.1046/j.1432-1033.2002.02963.x. [DOI] [PubMed] [Google Scholar]
- Derossi D., Chassaing G., Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 1998 Feb;8(2):84–87. [PubMed] [Google Scholar]
- Elmquist A., Lindgren M., Bartfai T., Langel U VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res. 2001 Oct 1;269(2):237–244. doi: 10.1006/excr.2001.5316. [DOI] [PubMed] [Google Scholar]
- Hällbrink M., Florén A., Elmquist A., Pooga M., Bartfai T., Langel U. Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta. 2001 Dec 1;1515(2):101–109. doi: 10.1016/s0005-2736(01)00398-4. [DOI] [PubMed] [Google Scholar]
- Joliot A. H., Triller A., Volovitch M., Pernelle C., Prochiantz A. alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol. 1991 Nov;3(11):1121–1134. [PubMed] [Google Scholar]
- Langel U., Pooga M., Kairane C., Zilmer M., Bartfai T. A galanin-mastoparan chimeric peptide activates the Na+,K(+)-ATPase and reverses its inhibition by ouabain. Regul Pept. 1996 Apr 9;62(1):47–52. doi: 10.1016/0167-0115(96)00002-x. [DOI] [PubMed] [Google Scholar]
- Lindgren M., Gallet X., Soomets U., Hällbrink M., Bråkenhielm E., Pooga M., Brasseur R., Langel U. Translocation properties of novel cell penetrating transportan and penetratin analogues. Bioconjug Chem. 2000 Sep-Oct;11(5):619–626. doi: 10.1021/bc990156s. [DOI] [PubMed] [Google Scholar]
- Lindgren M., Hällbrink M., Prochiantz A., Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000 Mar;21(3):99–103. doi: 10.1016/s0165-6147(00)01447-4. [DOI] [PubMed] [Google Scholar]
- Madara J. L. Regulation of the movement of solutes across tight junctions. Annu Rev Physiol. 1998;60:143–159. doi: 10.1146/annurev.physiol.60.1.143. [DOI] [PubMed] [Google Scholar]
- Mukherjee S., Ghosh R. N., Maxfield F. R. Endocytosis. Physiol Rev. 1997 Jul;77(3):759–803. doi: 10.1152/physrev.1997.77.3.759. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M. Blood-brain barrier biology and methodology. J Neurovirol. 1999 Dec;5(6):556–569. doi: 10.3109/13550289909021285. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M. CNS drug design based on principles of blood-brain barrier transport. J Neurochem. 1998 May;70(5):1781–1792. doi: 10.1046/j.1471-4159.1998.70051781.x. [DOI] [PubMed] [Google Scholar]
- Pooga M., Hällbrink M., Zorko M., Langel U. Cell penetration by transportan. FASEB J. 1998 Jan;12(1):67–77. doi: 10.1096/fasebj.12.1.67. [DOI] [PubMed] [Google Scholar]
- Pooga M., Kut C., Kihlmark M., Hällbrink M., Fernaeus S., Raid R., Land T., Hallberg E., Bartfai T., Langel U. Cellular translocation of proteins by transportan. FASEB J. 2001 Jun;15(8):1451–1453. doi: 10.1096/fj.00-0780fje. [DOI] [PubMed] [Google Scholar]
- Ranaldi Giulia, Marigliano Iolanda, Vespignani Isabella, Perozzi Giuditta, Sambuy Yula. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line(1). J Nutr Biochem. 2002 Mar;13(3):157–167. doi: 10.1016/s0955-2863(01)00208-x. [DOI] [PubMed] [Google Scholar]
- Rose J. M., Audus K. L. AT1 receptors mediate angiotensin II uptake and transport by bovine brain microvessel endothelial cells in primary culture. J Cardiovasc Pharmacol. 1999 Jan;33(1):30–35. doi: 10.1097/00005344-199901000-00005. [DOI] [PubMed] [Google Scholar]
- Rothbard J. B., Garlington S., Lin Q., Kirschberg T., Kreider E., McGrane P. L., Wender P. A., Khavari P. A. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med. 2000 Nov;6(11):1253–1257. doi: 10.1038/81359. [DOI] [PubMed] [Google Scholar]
- Rousselle C., Clair P., Lefauconnier J. M., Kaczorek M., Scherrmann J. M., Temsamani J. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol. 2000 Apr;57(4):679–686. doi: 10.1124/mol.57.4.679. [DOI] [PubMed] [Google Scholar]
- Scheller A., Wiesner B., Melzig M., Bienert M., Oehlke J. Evidence for an amphipathicity independent cellular uptake of amphipathic cell-penetrating peptides. Eur J Biochem. 2000 Oct;267(19):6043–6050. doi: 10.1046/j.1432-1327.2000.01681.x. [DOI] [PubMed] [Google Scholar]
- Sears C. L. Molecular physiology and pathophysiology of tight junctions V. assault of the tight junction by enteric pathogens. Am J Physiol Gastrointest Liver Physiol. 2000 Dec;279(6):G1129–G1134. doi: 10.1152/ajpgi.2000.279.6.G1129. [DOI] [PubMed] [Google Scholar]
- Smith D. E., Gorski J. Extrogen control of uterine glucose metabolism. An analysis based on the transport and phosphorylation of 2-deoxyglucose. J Biol Chem. 1968 Aug 25;243(16):4169–4174. [PubMed] [Google Scholar]
- Soomets U., Lindgren M., Gallet X., Hällbrink M., Elmquist A., Balaspiri L., Zorko M., Pooga M., Brasseur R., Langel U. Deletion analogues of transportan. Biochim Biophys Acta. 2000 Jul 31;1467(1):165–176. doi: 10.1016/s0005-2736(00)00216-9. [DOI] [PubMed] [Google Scholar]
- Troyanovsky S. M. Mechanism of cell-cell adhesion complex assembly. Curr Opin Cell Biol. 1999 Oct;11(5):561–566. doi: 10.1016/s0955-0674(99)00021-6. [DOI] [PubMed] [Google Scholar]
- Violini Stefania, Sharma Vijay, Prior Julie L., Dyszlewski Mary, Piwnica-Worms David. Evidence for a plasma membrane-mediated permeability barrier to Tat basic domain in well-differentiated epithelial cells: lack of correlation with heparan sulfate. Biochemistry. 2002 Oct 22;41(42):12652–12661. doi: 10.1021/bi026097e. [DOI] [PubMed] [Google Scholar]
- Vivès E., Richard J-P, Rispal C., Lebleu B. TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci. 2003 Apr;4(2):125–132. doi: 10.2174/1389203033487306. [DOI] [PubMed] [Google Scholar]
- Walum E., Peterson A. Tritiated 2-deoxy-D-glucose as a probe for cell membrane permeability studies. Anal Biochem. 1982 Feb;120(1):8–11. doi: 10.1016/0003-2697(82)90310-4. [DOI] [PubMed] [Google Scholar]