Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 1;377(Pt 1):51–59. doi: 10.1042/BJ20030952

Cytoskeletal protein 4.1G binds to the third intracellular loop of the A1 adenosine receptor and inhibits receptor action.

Dongcheng Lu 1, Henglin Yan 1, Timothy Othman 1, Christopher P Turner 1, Thomas Woolf 1, Scott A Rivkees 1
PMCID: PMC1223836  PMID: 12974671

Abstract

To identify binding partners of the A1AR (A1 adenosine receptor), yeast two-hybrid screening of a rat embryonic cDNA library was performed. This procedure led to the identification of erythrocyte membrane cytoskeletal protein (represented as 4.1G) as an A1AR-binding partner. Truncation studies revealed that the C-terminal domain of 4.1G was essential for binding to A1ARs and that the C-terminal domain of 4.1G and the third intracellular loop of A1ARs interacted. A1AR-4.1G interaction was also confirmed in studies using brain tissue. Studies in HEK-293 (human embryonic kidney 293) cells and Chinese-hamster ovary cells showed that 4.1G interfered with A1AR signal transduction, as 4.1G reduced A1AR-mediated inhibition of cAMP accumulation and intracellular calcium release. 4.1G also altered cell-surface A1AR expression. These observations identify 4.1G as a novel A1AR-binding partner that can regulate adenosine action.

Full Text

The Full Text of this article is available as a PDF (252.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar M., Okajima F., Tomura H., Shimegi S., Kondo Y. A single species of A1 adenosine receptor expressed in Chinese hamster ovary cells not only inhibits cAMP accumulation but also stimulates phospholipase C and arachidonate release. Mol Pharmacol. 1994 May;45(5):1036–1042. [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baird G. S., Zacharias D. A., Tsien R. Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11984–11989. doi: 10.1073/pnas.97.22.11984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borea P. A., Dalpiaz A., Varani K., Gessi S., Gilli G. Binding thermodynamics at A1 and A2A adenosine receptors. Life Sci. 1996;59(17):1373–1388. doi: 10.1016/0024-3205(96)00311-6. [DOI] [PubMed] [Google Scholar]
  5. Chishti A. H., Kim A. C., Marfatia S. M., Lutchman M., Hanspal M., Jindal H., Liu S. C., Low P. S., Rouleau G. A., Mohandas N. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci. 1998 Aug;23(8):281–282. doi: 10.1016/s0968-0004(98)01237-7. [DOI] [PubMed] [Google Scholar]
  6. Cunha R. A., Sebastião A. M., Ribeiro J. A. Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J Neurosci. 1998 Mar 15;18(6):1987–1995. doi: 10.1523/JNEUROSCI.18-06-01987.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Decking U. K., Schlieper G., Kroll K., Schrader J. Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ Res. 1997 Aug;81(2):154–164. doi: 10.1161/01.res.81.2.154. [DOI] [PubMed] [Google Scholar]
  8. Dickenson J. M., Hill S. J. Coupling of an endogenous 5-HT1B-like receptor to increases in intracellular calcium through a pertussis toxin-sensitive mechanism in CHO-K1 cells. Br J Pharmacol. 1995 Dec;116(7):2889–2896. doi: 10.1111/j.1476-5381.1995.tb15941.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunwiddie T. V., Masino S. A. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24:31–55. doi: 10.1146/annurev.neuro.24.1.31. [DOI] [PubMed] [Google Scholar]
  10. Englert Martin, Quitterer Ursula, Klotz Karl Norbert. Effector coupling of stably transfected human A3 adenosine receptors in CHO cells. Biochem Pharmacol. 2002 Jul 1;64(1):61–65. doi: 10.1016/s0006-2952(02)01071-7. [DOI] [PubMed] [Google Scholar]
  11. Feoktistov I., Biaggioni I. Adenosine A2B receptors. Pharmacol Rev. 1997 Dec;49(4):381–402. [PubMed] [Google Scholar]
  12. Ferrarini P. L., Mori C., Manera C., Martinelli A., Mori F., Saccomanni G., Barili P. L., Betti L., Giannaccini G., Trincavelli L. A novel class of highly potent and selective A1 adenosine antagonists: structure-affinity profile of a series of 1,8-naphthyridine derivatives. J Med Chem. 2000 Jul 27;43(15):2814–2823. doi: 10.1021/jm990321p. [DOI] [PubMed] [Google Scholar]
  13. Fredholm B. B. Adenosine and neuroprotection. Int Rev Neurobiol. 1997;40:259–280. [PubMed] [Google Scholar]
  14. Gascard P., Mohandas N. New insights into functions of erythroid proteins in nonerythroid cells. Curr Opin Hematol. 2000 Mar;7(2):123–129. doi: 10.1097/00062752-200003000-00009. [DOI] [PubMed] [Google Scholar]
  15. Georgiadis M. M., Jessen S. M., Ogata C. M., Telesnitsky A., Goff S. P., Hendrickson W. A. Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase. Structure. 1995 Sep 15;3(9):879–892. doi: 10.1016/S0969-2126(01)00223-4. [DOI] [PubMed] [Google Scholar]
  16. Ginés S., Hillion J., Torvinen M., Le Crom S., Casadó V., Canela E. I., Rondin S., Lew J. Y., Watson S., Zoli M. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8606–8611. doi: 10.1073/pnas.150241097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gregorio C. C., Repasky E. A., Fowler V. M., Black J. D. Dynamic properties of ankyrin in T lymphocytes: colocalization with spectrin and protein kinase C beta. J Cell Biol. 1994 Apr;125(2):345–358. doi: 10.1083/jcb.125.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haas H. L., Selbach O. Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000 Nov;362(4-5):375–381. doi: 10.1007/s002100000314. [DOI] [PubMed] [Google Scholar]
  19. Han B. G., Nunomura W., Takakuwa Y., Mohandas N., Jap B. K. Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization. Nat Struct Biol. 2000 Oct;7(10):871–875. doi: 10.1038/82819. [DOI] [PubMed] [Google Scholar]
  20. Harris Tony J. C., Ravandi Amir, Awrey Donald E., Siu Chi-Hung. Cytoskeleton interactions involved in the assembly and function of glycoprotein-80 adhesion complexes in dictyostelium. J Biol Chem. 2002 Nov 5;278(4):2614–2623. doi: 10.1074/jbc.M206241200. [DOI] [PubMed] [Google Scholar]
  21. Harris Tony J. C., Siu Chi-Hung. Reciprocal raft-receptor interactions and the assembly of adhesion complexes. Bioessays. 2002 Nov;24(11):996–1003. doi: 10.1002/bies.10172. [DOI] [PubMed] [Google Scholar]
  22. Hemming N. J., Anstee D. J., Staricoff M. A., Tanner M. J., Mohandas N. Identification of the membrane attachment sites for protein 4.1 in the human erythrocyte. J Biol Chem. 1995 Mar 10;270(10):5360–5366. doi: 10.1074/jbc.270.10.5360. [DOI] [PubMed] [Google Scholar]
  23. Hoover K. B., Bryant P. J. The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr Opin Cell Biol. 2000 Apr;12(2):229–234. doi: 10.1016/s0955-0674(99)00080-0. [DOI] [PubMed] [Google Scholar]
  24. Hoover Kevin B., Bryant Peter J. Drosophila Yurt is a new protein-4.1-like protein required for epithelial morphogenesis. Dev Genes Evol. 2002 Apr 17;212(5):230–238. doi: 10.1007/s00427-002-0231-6. [DOI] [PubMed] [Google Scholar]
  25. Iredale P. A., Alexander S. P., Hill S. J. Coupling of a transfected human brain A1 adenosine receptor in CHO-K1 cells to calcium mobilisation via a pertussis toxin-sensitive mechanism. Br J Pharmacol. 1994 Apr;111(4):1252–1256. doi: 10.1111/j.1476-5381.1994.tb14880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lallena M. J., Martínez C., Valcárcel J., Correas I. Functional association of nuclear protein 4.1 with pre-mRNA splicing factors. J Cell Sci. 1998 Jul 30;111(Pt 14):1963–1971. doi: 10.1242/jcs.111.14.1963. [DOI] [PubMed] [Google Scholar]
  27. Liu C. j., Wang H., Zhao Z., Yu S., Lu Y. B., Meyer J., Chatterjee G., Deschamps S., Roe B. A., Lengyel P. MyoD-dependent induction during myoblast differentiation of p204, a protein also inducible by interferon. Mol Cell Biol. 2000 Sep;20(18):7024–7036. doi: 10.1128/mcb.20.18.7024-7036.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lukowski S., Mira J. P., Zachowski A., Geny B. Fodrin inhibits phospholipases A2, C, and D by decreasing polyphosphoinositide cell content. Biochem Biophys Res Commun. 1998 Jul 20;248(2):278–284. doi: 10.1006/bbrc.1998.8942. [DOI] [PubMed] [Google Scholar]
  29. Martí-Renom M. A., Stuart A. C., Fiser A., Sánchez R., Melo F., Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325. doi: 10.1146/annurev.biophys.29.1.291. [DOI] [PubMed] [Google Scholar]
  30. Mattagajasingh S. N., Huang S. C., Hartenstein J. S., Benz E. J., Jr Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton. J Biol Chem. 2000 Sep 29;275(39):30573–30585. doi: 10.1074/jbc.M004578200. [DOI] [PubMed] [Google Scholar]
  31. Murthy A., Gonzalez-Agosti C., Cordero E., Pinney D., Candia C., Solomon F., Gusella J., Ramesh V. NHE-RF, a regulatory cofactor for Na(+)-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J Biol Chem. 1998 Jan 16;273(3):1273–1276. doi: 10.1074/jbc.273.3.1273. [DOI] [PubMed] [Google Scholar]
  32. North R. A., Barnard E. A. Nucleotide receptors. Curr Opin Neurobiol. 1997 Jun;7(3):346–357. doi: 10.1016/s0959-4388(97)80062-1. [DOI] [PubMed] [Google Scholar]
  33. Ohara R., Yamakawa H., Nakayama M., Yuasa S., Ohara O. Cellular and subcellular localization of a newly identified member of the protein 4.1 family, brain 4.1, in the cerebellum of adult and postnatally developing rats. Brain Res Dev Brain Res. 1999 Nov 18;117(2):127–138. doi: 10.1016/s0165-3806(99)00110-8. [DOI] [PubMed] [Google Scholar]
  34. Parra M., Gascard P., Walensky L. D., Gimm J. A., Blackshaw S., Chan N., Takakuwa Y., Berger T., Lee G., Chasis J. A. Molecular and functional characterization of protein 4.1B, a novel member of the protein 4.1 family with high level, focal expression in brain. J Biol Chem. 2000 Feb 4;275(5):3247–3255. doi: 10.1074/jbc.275.5.3247. [DOI] [PubMed] [Google Scholar]
  35. Parra M., Gascard P., Walensky L. D., Snyder S. H., Mohandas N., Conboy J. G. Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family. Genomics. 1998 Apr 15;49(2):298–306. doi: 10.1006/geno.1998.5265. [DOI] [PubMed] [Google Scholar]
  36. Pasini F. L., Capecchi P. L., Perri T. D. Adenosine and chronic ischemia of the lower limbs. Vasc Med. 2000;5(4):243–250. [PubMed] [Google Scholar]
  37. Pinder J. C., Chung A., Reid M. E., Gratzer W. B. Membrane attachment sites for the membrane cytoskeletal protein 4.1 of the red blood cell. Blood. 1993 Dec 1;82(11):3482–3488. [PubMed] [Google Scholar]
  38. Rivkees S. A., Price S. L., Zhou F. C. Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res. 1995 Apr 24;677(2):193–203. doi: 10.1016/0006-8993(95)00062-u. [DOI] [PubMed] [Google Scholar]
  39. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  40. Shen L., Liang F., Walensky L. D., Huganir R. L. Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association. J Neurosci. 2000 Nov 1;20(21):7932–7940. doi: 10.1523/JNEUROSCI.20-21-07932.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shi J., Blundell T. L., Mizuguchi K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol. 2001 Jun 29;310(1):243–257. doi: 10.1006/jmbi.2001.4762. [DOI] [PubMed] [Google Scholar]
  42. Tang K., Wu H., Mahata S. K., O'Connor D. T. A crucial role for the mitogen-activated protein kinase pathway in nicotinic cholinergic signaling to secretory protein transcription in pheochromocytoma cells. Mol Pharmacol. 1998 Jul;54(1):59–69. doi: 10.1124/mol.54.1.59. [DOI] [PubMed] [Google Scholar]
  43. Turner Christopher P., Pulciani Diane, Rivkees Scott A. Reduction in intracellular calcium levels induces injury in developing neurons. Exp Neurol. 2002 Nov;178(1):21–32. doi: 10.1006/exnr.2002.8027. [DOI] [PubMed] [Google Scholar]
  44. Walensky L. D., Gascard P., Fields M. E., Blackshaw S., Conboy J. G., Mohandas N., Snyder S. H. The 13-kD FK506 binding protein, FKBP13, interacts with a novel homologue of the erythrocyte membrane cytoskeletal protein 4.1. J Cell Biol. 1998 Apr 6;141(1):143–153. doi: 10.1083/jcb.141.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ward R. E., 4th, Lamb R. S., Fehon R. G. A conserved functional domain of Drosophila coracle is required for localization at the septate junction and has membrane-organizing activity. J Cell Biol. 1998 Mar 23;140(6):1463–1473. doi: 10.1083/jcb.140.6.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wechsler A., Teichberg V. I. Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. EMBO J. 1998 Jul 15;17(14):3931–3939. doi: 10.1093/emboj/17.14.3931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wood S. J., Slater C. R. beta-Spectrin is colocalized with both voltage-gated sodium channels and ankyrinG at the adult rat neuromuscular junction. J Cell Biol. 1998 Feb 9;140(3):675–684. doi: 10.1083/jcb.140.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ye K., Compton D. A., Lai M. M., Walensky L. D., Snyder S. H. Protein 4.1N binding to nuclear mitotic apparatus protein in PC12 cells mediates the antiproliferative actions of nerve growth factor. J Neurosci. 1999 Dec 15;19(24):10747–10756. doi: 10.1523/JNEUROSCI.19-24-10747.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhou D., Lambert S., Malen P. L., Carpenter S., Boland L. M., Bennett V. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol. 1998 Nov 30;143(5):1295–1304. doi: 10.1083/jcb.143.5.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ziemnicka-Kotula D., Xu J., Gu H., Potempska A., Kim K. S., Jenkins E. C., Trenkner E., Kotula L. Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of association of tyrosine kinases with the spectrin-based membrane skeleton. J Biol Chem. 1998 May 29;273(22):13681–13692. doi: 10.1074/jbc.273.22.13681. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES