Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2004 Jan 1;377(Pt 1):171–181. doi: 10.1042/BJ20030128

GBPI, a novel gastrointestinal- and brain-specific PP1-inhibitory protein, is activated by PKC and inactivated by PKA.

Qing-Rong Liu 1, Ping-Wu Zhang 1, Zhicheng Lin 1, Qi-Fu Li 1, Amina S Woods 1, Juan Troncoso 1, George R Uhl 1
PMCID: PMC1223837  PMID: 12974676

Abstract

The activities of PP1 (protein phosphatase 1), a principal cellular phosphatase that reverses serine/threonine protein phosphorylation, can be altered by inhibitors whose activities are themselves regulated by phosphorylation. We now describe a novel PKC (protein kinase C)-dependent PP1 inhibitor, namely GBPI (gut and brain phosphatase inhibitor). The shorter mRNA that encodes this protein, GBPI-1, is expressed in brain, stomach, small intestine, colon and kidney, whereas a longer GBPI-2 splice variant mRNA is found in testis. Human GBPI-1 mRNA encodes a 145-amino-acid, 16.5 kDa protein with pI 7.92. GBPI contains a consensus PP1-binding motif at residues 21-25 and consensus sites for phosphorylation by enzymes, including PKC, PKA (protein kinase A or cAMP-dependent protein kinase) and casein kinase II. Recombinant GBPI-1-fusion protein inhibits PP1 activity with IC50=3 nM after phosphorylation by PKC. Phospho-GBPI can even enhance PP2A activity by >50% at submicromolar concentrations. Non-phosphorylated GBPI-1 is inactive in both assays. Each of the mutations in amino acids located in potential PP1-binding sequences, K21E+K22E and W25A, decrease the ability of GBPI-1 to inhibit PP1. Mutations in the potential PKC phosphoacceptor site T58E also dramatically decrease the ability of GBPI-1 to inhibit PP1. Interestingly, when PKC-phosphorylated GBPI-1 is further phosphorylated by PKA, it no longer inhibits PP1. Thus, GBPI-1 is well positioned to integrate PKC and PKA modulation of PP1 to regulate differentially protein phosphorylation patterns in brain and gut. GBPI, its closest family member CPI (PKC-potentiated PP1 inhibitor) and two other family members, kinase-enhanced phosphatase inhibitor and phosphatase holoenzyme inhibitor, probably modulate integrated control of protein phosphorylation states in these and other tissues.

Full Text

The Full Text of this article is available as a PDF (281.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggen J. B., Nairn A. C., Chamberlin R. Regulation of protein phosphatase-1. Chem Biol. 2000 Jan;7(1):R13–R23. doi: 10.1016/s1074-5521(00)00069-7. [DOI] [PubMed] [Google Scholar]
  2. Alessi D., MacDougall L. K., Sola M. M., Ikebe M., Cohen P. The control of protein phosphatase-1 by targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur J Biochem. 1992 Dec 15;210(3):1023–1035. doi: 10.1111/j.1432-1033.1992.tb17508.x. [DOI] [PubMed] [Google Scholar]
  3. Beullens M., Van Eynde A., Bollen M., Stalmans W. Inactivation of nuclear inhibitory polypeptides of protein phosphatase-1 (NIPP-1) by protein kinase A. J Biol Chem. 1993 Jun 25;268(18):13172–13177. [PubMed] [Google Scholar]
  4. Bollen M., Stalmans W. The structure, role, and regulation of type 1 protein phosphatases. Crit Rev Biochem Mol Biol. 1992;27(3):227–281. doi: 10.3109/10409239209082564. [DOI] [PubMed] [Google Scholar]
  5. Chan P. K., Liu Q. R., Durban E. The major phosphorylation site of nucleophosmin (B23) is phosphorylated by a nuclear kinase II. Biochem J. 1990 Sep 1;270(2):549–552. doi: 10.1042/bj2700549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  7. Cohen Patricia T. W. Protein phosphatase 1--targeted in many directions. J Cell Sci. 2002 Jan 15;115(Pt 2):241–256. doi: 10.1242/jcs.115.2.241. [DOI] [PubMed] [Google Scholar]
  8. Deng Jing Ti, Sutherland Cindy, Brautigan David L., Eto Masumi, Walsh Michael P. Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem J. 2002 Oct 15;367(Pt 2):517–524. doi: 10.1042/BJ20020522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dubois Thierry, Howell Steven, Zemlickova Eva, Learmonth Michele, Cronshaw Andy, Aitken Alastair. Novel in vitro and in vivo phosphorylation sites on protein phosphatase 1 inhibitor CPI-17. Biochem Biophys Res Commun. 2003 Mar 7;302(2):186–192. doi: 10.1016/s0006-291x(03)00130-x. [DOI] [PubMed] [Google Scholar]
  10. Egloff M. P., Cohen P. T., Reinemer P., Barford D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J Mol Biol. 1995 Dec 15;254(5):942–959. doi: 10.1006/jmbi.1995.0667. [DOI] [PubMed] [Google Scholar]
  11. Egloff M. P., Johnson D. F., Moorhead G., Cohen P. T., Cohen P., Barford D. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 1997 Apr 15;16(8):1876–1887. doi: 10.1093/emboj/16.8.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Erdodi Ferenc, Kiss Eniko, Walsh Michael P., Stefansson Bjarki, Deng Jing Ti, Eto Masumi, Brautigan David L., Hartshorne David J. Phosphorylation of protein phosphatase type-1 inhibitory proteins by integrin-linked kinase and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun. 2003 Jun 27;306(2):382–387. doi: 10.1016/s0006-291x(03)00976-8. [DOI] [PubMed] [Google Scholar]
  13. Eto M., Karginov A., Brautigan D. L. A novel phosphoprotein inhibitor of protein type-1 phosphatase holoenzymes. Biochemistry. 1999 Dec 21;38(51):16952–16957. doi: 10.1021/bi992030o. [DOI] [PubMed] [Google Scholar]
  14. Eto M., Ohmori T., Suzuki M., Furuya K., Morita F. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem. 1995 Dec;118(6):1104–1107. doi: 10.1093/oxfordjournals.jbchem.a124993. [DOI] [PubMed] [Google Scholar]
  15. Feng Z. H., Wilson S. E., Peng Z. Y., Schlender K. K., Reimann E. M., Trumbly R. J. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J Biol Chem. 1991 Dec 15;266(35):23796–23801. [PubMed] [Google Scholar]
  16. Fienberg A. A., Hiroi N., Mermelstein P. G., Song W., Snyder G. L., Nishi A., Cheramy A., O'Callaghan J. P., Miller D. B., Cole D. G. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science. 1998 Aug 7;281(5378):838–842. doi: 10.1126/science.281.5378.838. [DOI] [PubMed] [Google Scholar]
  17. Greengard P., Allen P. B., Nairn A. C. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron. 1999 Jul;23(3):435–447. doi: 10.1016/s0896-6273(00)80798-9. [DOI] [PubMed] [Google Scholar]
  18. Hall K. U., Collins S. P., Gamm D. M., Massa E., DePaoli-Roach A. A., Uhler M. D. Phosphorylation-dependent inhibition of protein phosphatase-1 by G-substrate. A Purkinje cell substrate of the cyclic GMP-dependent protein kinase. J Biol Chem. 1999 Feb 5;274(6):3485–3495. doi: 10.1074/jbc.274.6.3485. [DOI] [PubMed] [Google Scholar]
  19. Hamaguchi T., Ito M., Feng J., Seko T., Koyama M., Machida H., Takase K., Amano M., Kaibuchi K., Hartshorne D. J. Phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by protein kinase N. Biochem Biophys Res Commun. 2000 Aug 11;274(3):825–830. doi: 10.1006/bbrc.2000.3225. [DOI] [PubMed] [Google Scholar]
  20. Hayashi Y., Senba S., Yazawa M., Brautigan D. L., Eto M. Defining the structural determinants and a potential mechanism for inhibition of myosin phosphatase by the protein kinase C-potentiated inhibitor protein of 17 kDa. J Biol Chem. 2001 Aug 21;276(43):39858–39863. doi: 10.1074/jbc.M107302200. [DOI] [PubMed] [Google Scholar]
  21. Hemmings H. C., Jr, Nairn A. C., Elliott J. I., Greengard P. Synthetic peptide analogs of DARPP-32 (Mr 32,000 dopamine- and cAMP-regulated phosphoprotein), an inhibitor of protein phosphatase-1. Phosphorylation, dephosphorylation, and inhibitory activity. J Biol Chem. 1990 Nov 25;265(33):20369–20376. [PubMed] [Google Scholar]
  22. Huang H. B., Horiuchi A., Watanabe T., Shih S. R., Tsay H. J., Li H. C., Greengard P., Nairn A. C. Characterization of the inhibition of protein phosphatase-1 by DARPP-32 and inhibitor-2. J Biol Chem. 1999 Mar 19;274(12):7870–7878. doi: 10.1074/jbc.274.12.7870. [DOI] [PubMed] [Google Scholar]
  23. Kennelly P. J., Oxenrider K. A., Leng J., Cantwell J. S., Zhao N. Identification of a serine/threonine-specific protein phosphatase from the archaebacterium Sulfolobus solfataricus. J Biol Chem. 1993 Mar 25;268(9):6505–6510. [PubMed] [Google Scholar]
  24. Koyama M., Ito M., Feng J., Seko T., Shiraki K., Takase K., Hartshorne D. J., Nakano T. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett. 2000 Jun 23;475(3):197–200. doi: 10.1016/s0014-5793(00)01654-9. [DOI] [PubMed] [Google Scholar]
  25. Kwon Y. G., Huang H. B., Desdouits F., Girault J. A., Greengard P., Nairn A. C. Characterization of the interaction between DARPP-32 and protein phosphatase 1 (PP-1): DARPP-32 peptides antagonize the interaction of PP-1 with binding proteins. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3536–3541. doi: 10.1073/pnas.94.8.3536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li L., Eto M., Lee M. R., Morita F., Yazawa M., Kitazawa T. Possible involvement of the novel CPI-17 protein in protein kinase C signal transduction of rabbit arterial smooth muscle. J Physiol. 1998 May 1;508(Pt 3):871–881. doi: 10.1111/j.1469-7793.1998.871bp.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
  28. Liu Q. R., Chan P. K. Formation of nucleophosmin/B23 oligomers requires both the amino- and the carboxyl-terminal domains of the protein. Eur J Biochem. 1991 Sep 15;200(3):715–721. doi: 10.1111/j.1432-1033.1991.tb16236.x. [DOI] [PubMed] [Google Scholar]
  29. Liu Q. R., López-Corcuera B., Mandiyan S., Nelson H., Nelson N. Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. J Biol Chem. 1993 Jan 25;268(3):2106–2112. [PubMed] [Google Scholar]
  30. Liu Qing-Rong, Zhang Ping-Wu, Zhen Qiaoxi, Walther Donna, Wang Xiao-Bing, Uhl George R. KEPI, a PKC-dependent protein phosphatase 1 inhibitor regulated by morphine. J Biol Chem. 2002 Jan 25;277(15):13312–13320. doi: 10.1074/jbc.M107558200. [DOI] [PubMed] [Google Scholar]
  31. Maynes J. T., Bateman K. S., Cherney M. M., Das A. K., Luu H. A., Holmes C. F., James M. N. Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1. J Biol Chem. 2001 Sep 4;276(47):44078–44082. doi: 10.1074/jbc.M107656200. [DOI] [PubMed] [Google Scholar]
  32. Mills Julia, Digicaylioglu Murat, Legg Arthur T., Young Clint E., Young Sean S., Barr Alasdair M., Fletcher Lauren, O'Connor Timothy P., Dedhar Shoukat. Role of integrin-linked kinase in nerve growth factor-stimulated neurite outgrowth. J Neurosci. 2003 Mar 1;23(5):1638–1648. doi: 10.1523/JNEUROSCI.23-05-01638.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mulkey R. M., Endo S., Shenolikar S., Malenka R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature. 1994 Jun 9;369(6480):486–488. doi: 10.1038/369486a0. [DOI] [PubMed] [Google Scholar]
  34. Nishi A., Snyder G. L., Nairn A. C., Greengard P. Role of calcineurin and protein phosphatase-2A in the regulation of DARPP-32 dephosphorylation in neostriatal neurons. J Neurochem. 1999 May;72(5):2015–2021. doi: 10.1046/j.1471-4159.1999.0722015.x. [DOI] [PubMed] [Google Scholar]
  35. Park I. K., Roach P., Bondor J., Fox S. P., DePaoli-Roach A. A. Molecular mechanism of the synergistic phosphorylation of phosphatase inhibitor-2. Cloning, expression, and site-directed mutagenesis of inhibitor-2. J Biol Chem. 1994 Jan 14;269(2):944–954. [PubMed] [Google Scholar]
  36. Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
  37. Sheppeck J. E., 2nd, Gauss C. M., Chamberlin A. R. Inhibition of the Ser-Thr phosphatases PP1 and PP2A by naturally occurring toxins. Bioorg Med Chem. 1997 Sep;5(9):1739–1750. doi: 10.1016/s0968-0896(97)00146-6. [DOI] [PubMed] [Google Scholar]
  38. Sontag E. Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell Signal. 2001 Jan;13(1):7–16. doi: 10.1016/s0898-6568(00)00123-6. [DOI] [PubMed] [Google Scholar]
  39. Svenningsson P., Lindskog M., Ledent C., Parmentier M., Greengard P., Fredholm B. B., Fisone G. Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1856–1860. doi: 10.1073/pnas.97.4.1856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takizawa Norio, Koga Yasuhiko, Ikebe Mitsuo. Phosphorylation of CPI17 and myosin binding subunit of type 1 protein phosphatase by p21-activated kinase. Biochem Biophys Res Commun. 2002 Oct 4;297(4):773–778. doi: 10.1016/s0006-291x(02)02302-1. [DOI] [PubMed] [Google Scholar]
  41. Tu J., Carlson M. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Oct;14(10):6789–6796. doi: 10.1128/mcb.14.10.6789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wakula Paulina, Beullens Monique, Ceulemans Hugo, Stalmans Willy, Bollen Mathieu. Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. J Biol Chem. 2003 Mar 25;278(21):18817–18823. doi: 10.1074/jbc.M300175200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES