Abstract
The role of glucose 6-P (glucose 6-phosphate) in regulating the activation state of glycogen synthase and its translocation is well documented. In the present study, we investigated the effects of glucose 6-P on the activation state and compartmentation of phosphorylase in hepatocytes. Glucose 6-P levels were modulated in hepatocytes by glucokinase overexpression or inhibition with 5-thioglucose and the effects of AMP were tested using AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), which is metabolized to an AMP analogue. Inhibition of glucokinase partially counteracted the effect of glucose both on the inactivation of phosphorylase and on the translocation of phosphorylase a from a soluble to a particulate fraction. The increase in glucose 6-P caused by glucokinase overexpression caused translocation of phosphorylase a to the pellet and had additive effects with glucose on inactivation of phosphorylase. It decreased the glucose concentration that caused half-maximal inactivation from 20 to 11 mM, indicating that it acts synergistically with glucose. AICAR activated phosphorylase and counteracted the effect of glucose 6-P on phosphorylase inactivation. However, it did not counteract translocation of phosphorylase by glucose 6-P. Glucose 6-P and AICAR had opposite effects on the activation state of glycogen synthase, but they had additive effects on translocation of the enzyme to the pellet. There was a direct correlation between the translocation of phosphorylase a and of glycogen synthase to the pellet, suggesting that these enzymes translocate in tandem. In conclusion, glucose 6-P causes both translocation of phosphorylase and inactivation, indicating a more complex role in the regulation of glycogen metabolism than can be explained from regulation of glycogen synthase alone.
Full Text
The Full Text of this article is available as a PDF (264.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L. Involvement of glucokinase translocation in the mechanism by which resorcinol inhibits glycolysis in hepatocytes. Biochem J. 1997 Aug 1;325(Pt 3):667–673. doi: 10.1042/bj3250667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Peak M., Alberti K. G. Regulation of glycogen synthesis from glucose and gluconeogenic precursors by insulin in periportal and perivenous rat hepatocytes. Biochem J. 1990 Feb 15;266(1):91–102. doi: 10.1042/bj2660091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agius L., Peak M., Newgard C. B., Gomez-Foix A. M., Guinovart J. J. Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis. J Biol Chem. 1996 Nov 29;271(48):30479–30486. doi: 10.1074/jbc.271.48.30479. [DOI] [PubMed] [Google Scholar]
- Agius L., Stubbs M. Investigation of the mechanism by which glucose analogues cause translocation of glucokinase in hepatocytes: evidence for two glucose binding sites. Biochem J. 2000 Mar 1;346(Pt 2):413–421. [PMC free article] [PubMed] [Google Scholar]
- Aiston S., Agius L. Leptin enhances glycogen storage in hepatocytes by inhibition of phosphorylase and exerts an additive effect with insulin. Diabetes. 1999 Jan;48(1):15–20. doi: 10.2337/diabetes.48.1.15. [DOI] [PubMed] [Google Scholar]
- Aiston S., Hampson L., Gómez-Foix A. M., Guinovart J. J., Agius L. Hepatic glycogen synthesis is highly sensitive to phosphorylase activity: evidence from metabolic control analysis. J Biol Chem. 2001 Apr 17;276(26):23858–23866. doi: 10.1074/jbc.M101454200. [DOI] [PubMed] [Google Scholar]
- Becker T. C., Noel R. J., Johnson J. H., Lynch R. M., Hirose H., Tokuyama Y., Bell G. I., Newgard C. B. Differential effects of overexpressed glucokinase and hexokinase I in isolated islets. Evidence for functional segregation of the high and low Km enzymes. J Biol Chem. 1996 Jan 5;271(1):390–394. doi: 10.1074/jbc.271.1.390. [DOI] [PubMed] [Google Scholar]
- Bollen M., Keppens S., Stalmans W. Specific features of glycogen metabolism in the liver. Biochem J. 1998 Nov 15;336(Pt 1):19–31. doi: 10.1042/bj3360019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brady M. J., Kartha P. M., Aysola A. A., Saltiel A. R. The role of glucose metabolites in the activation and translocation of glycogen synthase by insulin in 3T3-L1 adipocytes. J Biol Chem. 1999 Sep 24;274(39):27497–27504. doi: 10.1074/jbc.274.39.27497. [DOI] [PubMed] [Google Scholar]
- Cadefau J., Bollen M., Stalmans W. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase. Biochem J. 1997 Mar 15;322(Pt 3):745–750. doi: 10.1042/bj3220745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carabaza A., Ciudad C. J., Baqué S., Guinovart J. J. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes. FEBS Lett. 1992 Jan 20;296(2):211–214. doi: 10.1016/0014-5793(92)80381-p. [DOI] [PubMed] [Google Scholar]
- Caro J. F., Triester S., Patel V. K., Tapscott E. B., Frazier N. L., Dohm G. L. Liver glucokinase: decreased activity in patients with type II diabetes. Horm Metab Res. 1995 Jan;27(1):19–22. doi: 10.1055/s-2007-979899. [DOI] [PubMed] [Google Scholar]
- Ciudad C. J., Carabaza A., Guinovart J. J. Glucose 6-phosphate plays a central role in the activation of glycogen synthase by glucose in hepatocytes. Biochem Biophys Res Commun. 1986 Dec 30;141(3):1195–1200. doi: 10.1016/s0006-291x(86)80171-1. [DOI] [PubMed] [Google Scholar]
- Coats W. S., Browner M. F., Fletterick R. J., Newgard C. B. An engineered liver glycogen phosphorylase with AMP allosteric activation. J Biol Chem. 1991 Aug 25;266(24):16113–16119. [PubMed] [Google Scholar]
- El-Haschimi Karim, Dufresne Scott D., Hirshman Michael F., Flier Jeffrey S., Goodyear Laurie J., Bjørbaek Christian. Insulin resistance and lipodystrophy in mice lacking ribosomal S6 kinase 2. Diabetes. 2003 Jun;52(6):1340–1346. doi: 10.2337/diabetes.52.6.1340. [DOI] [PubMed] [Google Scholar]
- Fernández-Novell J. M., Ariño J., Vilaró S., Bellido D., Guinovart J. J. Role of glucose 6-phosphate in the translocation of glycogen synthase in rat hepatocytes. Biochem J. 1992 Dec 1;288(Pt 2):497–501. doi: 10.1042/bj2880497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández-Novell J. M., Ariño J., Vilaró S., Guinovart J. J. Glucose induces the translocation and the aggregation of glycogen synthase in rat hepatocytes. Biochem J. 1992 Jan 15;281(Pt 2):443–448. doi: 10.1042/bj2810443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández-Novell J. M., Bellido D., Vilaró S., Guinovart J. J. Glucose induces the translocation of glycogen synthase to the cell cortex in rat hepatocytes. Biochem J. 1997 Jan 1;321(Pt 1):227–231. doi: 10.1042/bj3210227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández-Novell J. M., Roca A., Bellido D., Vilaró S., Guinovart J. J. Translocation and aggregation of hepatic glycogen synthase during the fasted-to-refed transition in rats. Eur J Biochem. 1996 Jun 1;238(2):570–575. doi: 10.1111/j.1432-1033.1996.0570z.x. [DOI] [PubMed] [Google Scholar]
- García-Rocha M., Roca A., De La Iglesia N., Baba O., Fernández-Novell J. M., Ferrer J. C., Guinovart J. J. Intracellular distribution of glycogen synthase and glycogen in primary cultured rat hepatocytes. Biochem J. 2001 Jul 1;357(Pt 1):17–24. doi: 10.1042/0264-6021:3570017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilboe D. P., Larson K. L., Nuttall F. Q. Radioactive method for the assay of glycogen phosphorylases. Anal Biochem. 1972 May;47(1):20–27. doi: 10.1016/0003-2697(72)90274-6. [DOI] [PubMed] [Google Scholar]
- Gomis Roger R., Favre Cristián, García-Rocha Mar, Fernández-Novell Josep M., Ferrer Juan C., Guinovart Joan J. Glucose 6-phosphate produced by gluconeogenesis and by glucokinase is equally effective in activating hepatic glycogen synthase. J Biol Chem. 2003 Jan 7;278(11):9740–9746. doi: 10.1074/jbc.M212151200. [DOI] [PubMed] [Google Scholar]
- Guinovart J. J., Gómez-Foix A. M., Seoane J., Fernández-Novell J. M., Bellido D., Vilaró S. Bridging the gap between glucose phosphorylation and glycogen synthesis in the liver. Biochem Soc Trans. 1997 Feb;25(1):157–160. doi: 10.1042/bst0250157. [DOI] [PubMed] [Google Scholar]
- Halse Reza, Fryer Lee G. D., McCormack James G., Carling David, Yeaman Stephen J. Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase. Diabetes. 2003 Jan;52(1):9–15. doi: 10.2337/diabetes.52.1.9. [DOI] [PubMed] [Google Scholar]
- Hardie D. G., Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997 Jun 1;246(2):259–273. doi: 10.1111/j.1432-1033.1997.00259.x. [DOI] [PubMed] [Google Scholar]
- Hawkins Meredith, Gabriely Ilan, Wozniak Robert, Vilcu Cristian, Shamoon Harry, Rossetti Luciano. Fructose improves the ability of hyperglycemia per se to regulate glucose production in type 2 diabetes. Diabetes. 2002 Mar;51(3):606–614. doi: 10.2337/diabetes.51.3.606. [DOI] [PubMed] [Google Scholar]
- Hue L., Bontemps F., Hers H. The effects of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J. 1975 Oct;152(1):105–114. doi: 10.1042/bj1520105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurd S. S., Teller D., Fischer E. H. Probable formation of partially phosphorylated intermediates in the interconversions of phosphorylase A and B. Biochem Biophys Res Commun. 1966 Jul 6;24(1):79–84. doi: 10.1016/0006-291x(66)90413-x. [DOI] [PubMed] [Google Scholar]
- Johnson L. N., Snape P., Martin J. L., Acharya K. R., Barford D., Oikonomakos N. G. Crystallographic binding studies on the allosteric inhibitor glucose-6-phosphate to T state glycogen phosphorylase b. J Mol Biol. 1993 Jul 5;232(1):253–267. doi: 10.1006/jmbi.1993.1380. [DOI] [PubMed] [Google Scholar]
- KREBS E. G., LOVE D. S., BRATVOLD G. E., TRAYSER K. A., MEYER W. L., FISCHER E. H. PURIFICATION AND PROPERTIES OF RABBIT SKELETAL MUSCLE PHOSPHORYLASE B KINASE. Biochemistry. 1964 Aug;3:1022–1033. doi: 10.1021/bi00896a003. [DOI] [PubMed] [Google Scholar]
- Latsis Theodore, Andersen Birgitte, Agius Loranne. Diverse effects of two allosteric inhibitors on the phosphorylation state of glycogen phosphorylase in hepatocytes. Biochem J. 2002 Nov 15;368(Pt 1):309–316. doi: 10.1042/BJ20021070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Longnus Sarah L., Wambolt Richard B., Parsons Hannah L., Brownsey Roger W., Allard Michael F. 5-Aminoimidazole-4-carboxamide 1-beta -D-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol. 2003 Apr;284(4):R936–R944. doi: 10.1152/ajpregu.00319.2002. [DOI] [PubMed] [Google Scholar]
- Martensen T. M., Brotherton J. E., Graves D. J. Kinetic studies of the activation of muscle phosphorylase phosphatase. J Biol Chem. 1973 Dec 25;248(24):8329–8336. [PubMed] [Google Scholar]
- Newgard C. B., Brady M. J., O'Doherty R. M., Saltiel A. R. Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes. 2000 Dec;49(12):1967–1977. doi: 10.2337/diabetes.49.12.1967. [DOI] [PubMed] [Google Scholar]
- Newgard C. B., Hwang P. K., Fletterick R. J. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol. 1989;24(1):69–99. doi: 10.3109/10409238909082552. [DOI] [PubMed] [Google Scholar]
- Seoane J., Gómez-Foix A. M., O'Doherty R. M., Gómez-Ara C., Newgard C. B., Guinovart J. J. Glucose 6-phosphate produced by glucokinase, but not hexokinase I, promotes the activation of hepatic glycogen synthase. J Biol Chem. 1996 Sep 27;271(39):23756–23760. doi: 10.1074/jbc.271.39.23756. [DOI] [PubMed] [Google Scholar]
- Stalmans W., Gevers G. The catalytic activity of phosphorylase b in the liver. With a note on the assay in the glycogenolytic direction. Biochem J. 1981 Nov 15;200(2):327–336. doi: 10.1042/bj2000327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
- Tu J. I., Graves D. J. Inhibition of the phosphorylase kinase catalyzed reaction by glucose-6-P. Biochem Biophys Res Commun. 1973 Jul 2;53(1):59–65. doi: 10.1016/0006-291x(73)91400-9. [DOI] [PubMed] [Google Scholar]
- Villar-Palasí C., Guinovart J. J. The role of glucose 6-phosphate in the control of glycogen synthase. FASEB J. 1997 Jun;11(7):544–558. [PubMed] [Google Scholar]
- Vincent M. F., Bontemps F., Van den Berghe G. Inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside in isolated rat hepatocytes. Biochem J. 1992 Jan 1;281(Pt 1):267–272. doi: 10.1042/bj2810267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vincent M. F., Marangos P. J., Gruber H. E., Van den Berghe G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes. 1991 Oct;40(10):1259–1266. doi: 10.2337/diab.40.10.1259. [DOI] [PubMed] [Google Scholar]
- Witters L. A., Kemp B. E. Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5'-AMP-activated protein kinase. J Biol Chem. 1992 Feb 15;267(5):2864–2867. [PubMed] [Google Scholar]
- Young M. E., Radda G. K., Leighton B. Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR--an activator of AMP-activated protein kinase. FEBS Lett. 1996 Mar 11;382(1-2):43–47. doi: 10.1016/0014-5793(96)00129-9. [DOI] [PubMed] [Google Scholar]