Abstract
A family 36 glycosyltransferase gene was cloned from Vibrio proteolyticus. The deduced amino acid sequence showed a high degree of identity with ChBP (chitobiose phosphorylase) from another species, Vibrio furnissii. The recombinant enzyme catalysed the reversible phosphorolysis of (GlcNAc)2 (chitobiose) to form 2-acetamide-2-deoxy-alpha-D-glucose 1-phosphate [GlcNAc-1-P] and GlcNAc, but showed no activity on cellobiose, indicating that the enzyme was ChBP, not cellobiose phosphorylase. In the synthetic reaction, the ChBP was active with alpha-D-glucose 1-phosphate as the donor substrate as well as GlcNAc-1-P to produce beta-D-glucosyl-(1-->4)-2-acetamide-2-deoxy-D-glucose with GlcNAc as the acceptor substrate. The enzyme allowed aryl-beta-glycosides of GlcNAc as the acceptor substrate with 10-20% activities of GlcNAc. Kinetic parameters of (GlcNAc)2 in the phosphorolysis and GlcNAc-1-P in the synthetic reaction were determined as follows: phosphorolysis, k(0)=5.5 s(-1), K(m)=2.0 mM; synthetic reaction, k(0)=10 s(-1), K(m)=14 mM, respectively. The mechanism of the phosphorolytic reaction followed a sequential Bi Bi mechanism, as frequently observed with cellobiose phosphorylases. Substrate inhibition by GlcNAc was observed in the synthetic reaction. The enzyme was considered a unique biocatalyst for glycosidation.
Full Text
The Full Text of this article is available as a PDF (174.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AYERS W. A. Phosphorolysis and synthesis of cellobiose by cell extracts from Ruminococcus flavefaciens. J Biol Chem. 1959 Nov;234:2819–2822. [PubMed] [Google Scholar]
- Alexander J. K. Purification and specificity of cellobiose phosphorylase from Clostridium thermocellum. J Biol Chem. 1968 Jun 10;243(11):2899–2904. [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
- Heidelberg J. F., Eisen J. A., Nelson W. C., Clayton R. A., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D., Umayam L. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 2000 Aug 3;406(6795):477–483. doi: 10.1038/35020000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Yeon-Kye, Kitaoka Motomitsu, Krishnareddy Manem, Mori Yutaka, Hayashi Kiyoshi. Kinetic studies of a recombinant cellobiose phosphorylase (CBP) of the Clostridium thermocellum YM4 strain expressed in Escherichia coli. J Biochem. 2002 Aug;132(2):197–203. doi: 10.1093/oxfordjournals.jbchem.a003210. [DOI] [PubMed] [Google Scholar]
- Kitaoka M., Sasaki T., Taniguchi H. Purification and properties of laminaribiose phosphorylase (EC 2.4 1.31) from Euglena gracilis Z. Arch Biochem Biophys. 1993 Aug 1;304(2):508–514. doi: 10.1006/abbi.1993.1383. [DOI] [PubMed] [Google Scholar]
- Kitaoka M., Sasaki T., Taniguchi H. Synthetic reaction of Cellvibrio gilvus cellobiose phosphorylase. J Biochem. 1992 Jul;112(1):40–44. doi: 10.1093/oxfordjournals.jbchem.a123862. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liu Y. G., Mitsukawa N., Oosumi T., Whittier R. F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995 Sep;8(3):457–463. doi: 10.1046/j.1365-313x.1995.08030457.x. [DOI] [PubMed] [Google Scholar]
- Liu Y. G., Whittier R. F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 1995 Feb 10;25(3):674–681. doi: 10.1016/0888-7543(95)80010-j. [DOI] [PubMed] [Google Scholar]
- Makino Kozo, Oshima Kenshiro, Kurokawa Ken, Yokoyama Katsushi, Uda Takayuki, Tagomori Kenichi, Iijima Yoshio, Najima Masatomo, Nakano Masayuki, Yamashita Atsushi. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet. 2003 Mar 1;361(9359):743–749. doi: 10.1016/S0140-6736(03)12659-1. [DOI] [PubMed] [Google Scholar]
- Mark B. L., Vocadlo D. J., Knapp S., Triggs-Raine B. L., Withers S. G., James M. N. Crystallographic evidence for substrate-assisted catalysis in a bacterial beta-hexosaminidase. J Biol Chem. 2000 Dec 21;276(13):10330–10337. doi: 10.1074/jbc.M011067200. [DOI] [PubMed] [Google Scholar]
- Nelson K. E., Clayton R. A., Gill S. R., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D., Nelson W. C., Ketchum K. A. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 1999 May 27;399(6734):323–329. doi: 10.1038/20601. [DOI] [PubMed] [Google Scholar]
- Nidetzky B., Eis C., Albert M. Role of non-covalent enzyme-substrate interactions in the reaction catalysed by cellobiose phosphorylase from Cellulomonas uda. Biochem J. 2000 Nov 1;351(Pt 3):649–659. [PMC free article] [PubMed] [Google Scholar]
- Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park J. K., Keyhani N. O., Roseman S. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification, molecular cloning, and characterization of A N, N'-diacetylchitobiose phosphorylase. J Biol Chem. 2000 Oct 20;275(42):33077–33083. doi: 10.1074/jbc.M001042200. [DOI] [PubMed] [Google Scholar]
- Rajashekhara Eranna, Kitaoka Motomitsu, Kim Yeon-Kye, Hayashi Kiyoshi. Characterization of a cellobiose phosphorylase from a hyperthermophilic eubacterium, Thermotoga maritima MSB8. Biosci Biotechnol Biochem. 2002 Dec;66(12):2578–2586. doi: 10.1271/bbb.66.2578. [DOI] [PubMed] [Google Scholar]
- Reichenbecher M., Lottspeich F., Bronnenmeier K. Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem. 1997 Jul 1;247(1):262–267. doi: 10.1111/j.1432-1033.1997.00262.x. [DOI] [PubMed] [Google Scholar]
- Sasaki T., Tanaka T., Nakagawa S., Kainuma K. Purification and properties of Cellvibrio gilvus cellobiose phosphorylase. Biochem J. 1983 Mar 1;209(3):803–807. doi: 10.1042/bj2090803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yernool D. A., McCarthy J. K., Eveleigh D. E., Bok J. D. Cloning and characterization of the glucooligosaccharide catabolic pathway beta-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. J Bacteriol. 2000 Sep;182(18):5172–5179. doi: 10.1128/jb.182.18.5172-5179.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Z. Z., Nirasawa S., Nakajima Y., Yoshida M., Hayashi K. Function of the N-terminal propeptide of an aminopeptidase from Vibrio proteolyticus. Biochem J. 2000 Sep 15;350(Pt 3):671–676. [PMC free article] [PubMed] [Google Scholar]